Skip to main content

Germ Cell Toxicity: Significance in Genetic and Fertility Effects of Radiation and Chemicals

  • Chapter

Part of the book series: Environmental Science Research ((ESRH,volume 31))

Summary

The primordial germ cells originate in the region of the caudal end of the primitive streak, root of the allantois, and yolk sac splanchnopleure, and migrate to the gonadal ridges where they divide to form the oogonia of the female and gonocytes of the male. In the female, the transition to oocytes occurs in utero, and the female mammal is born with a finite number of oocytes that cannot be replaced. By contrast, the gonocytes of the male initiate divisions soon after birth to form the spermatogonial stem cells, which persist throughout reproductive life of the male and are capable of regenerating the seminiferous epithelium after injury. As a result of these basic differences in gametogenesis, the response of the male and female to radiation and chemicals is different. Any loss of oocytes in the female cannot be replaced, and if severe enough, will result in a shortening of the reproductive span. In the male, a temporary sterile period may be induced owing to destruction of the differentiating spermatogonia, but the stem cells are the most resistant spermatogonial type, are capable of repopulating the seminiferous epithelium, and fertility usually returns. The response of both the male and female changes with development of the embryonic to the adult gonad, and with differentiation and maturation in the adult. The primordial germ cells, early oocytes, and differentiating spermatogonia of the adult male are unusually sensitive to the cytotoxic action of noxious agents, but each agent elicits a specific response owing to the intricate biochemical and physiological changes associated with development and maturation of the gametes. The relationship of germ cell killing to fertility is direct, and long-term fertility effects can be predicted from histological analysis of the gonads. The relationship to genetic effects, on the other hand, is indirect, and acts primarily by limiting the cell stages available for testing, by affecting the distribution of mitotically active stem cells among the different stages of the mitotic cycle, and thereby changing both the type and frequency of genetic effects observed.

By acceptance of this article, the publisher or recipient acknowledges the U.S. Government’s right to retain a nonexclusive, royalty-free license in and to any copyright covering the article.

Research sponsored by the Office of Health and Environmental Research, U. S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, T. G. (1973) The effects of ionizing radiation on the mammalian ovary with particular reference to oogenesis, InHandbook of Physiology, Section 7:Endocrinology, Volume II,Female Reproductive System, Part 1, R. O. Greep, B. A. Astwood, S. R. Geiger, Eds. , American Physiologcal Society, Washington, D. C. , pp. 349 – 361.

    Google Scholar 

  2. Beaumont, H. M. (1960) Changes in the radiosensitivity of the testis during foetal development.Int. J. Rad. Biol. 2: 247 – 256.

    Article  Google Scholar 

  3. Beaumont, H. M. (1961) Radiosensitivity of oogonia and oocytes in the foetal rat.Int. J. Rad. Biol. 3: 59 – 72.

    Article  Google Scholar 

  4. Benda, C. (1887) Untersuchungen uber den Bau des funktionerierenden Samenkanalchens einiger Saugetiere und Folgerungen fur die Spermatogenese dieser Wirbeltierklasse. Arch. Anat. Microsc. Morphol. Exp. 30: 49 – 110.

    Article  Google Scholar 

  5. Bhattacharjee, D. , T. K. Shetty, and K. Sundaram (1978) Cytotoxicity of ethyl methanesulfonate in mice spermatogonia.Experientia35 (5): 630 – 631.

    Google Scholar 

  6. Brambell, F. W. R. (1927) The development and morphology of the gonads of the mouse. I. The morphogenesis of the indifferent gonad and of the ovary.Proc. Roy. Soc. Lond. B 101: 391 – 408.

    Article  Google Scholar 

  7. Brenneke, H. (1937) Strahlenschadigung von Mause - und Rattensperma, beobachtet an der Fruhent wicklung der Eier.Strahlentherapie60: 214 – 238.

    Google Scholar 

  8. Brewen, J. G. , H. S. Payne, K. P. Jones, and R. J. Preston (1975) Studies on chemically induced dominant lethality. I. The cytogenetic basis of MMS and induced dominant lethality in post–-meiotic male germ cells.Mut. Res. 33: 239 – 250.

    Google Scholar 

  9. Bullough, W. S. (1948) Mitotic activity in the adult male mouse, Mus musculus L. The diurnal cycles and their relation to waking and sleeping.Proc. Roy. Soc. B 135: 212 – 233.

    Article  ADS  Google Scholar 

  10. Cattanach, B. M. , C. E. Pollard, J. H. Isaacon (1968) Ethyl methanesulfonate-induced chromosome breakage in the mouse.Mut. Res. 6: 297 – 307.

    Google Scholar 

  11. Chang, M. C. , D. M. Hung, and E. B. Romanoff (1957) Effects of radio-cobalt irradiation of rabbit spermatozoa in vitro on fertilization and early development.Anat. Rec. 129: 211 – 229.

    Google Scholar 

  12. Chiquoine, A. D. (1954) The identification, origin, and migration of the primordial germ cells in the mouse embryo.Anat. Rec. 118: 135 – 146.

    Google Scholar 

  13. Clermont, Y. (1968) Differenciation et evolution des cellules sexuelles 1. La lignee male. Cinetique de la spermatogenese chez les Mammiferes, InLa Physiologie de la Reproduction les Mammiferes, A. Jost, Ed. , Editions du centre National de la Recherche Scientifique, Paris, pp. 7 – 60.

    Google Scholar 

  14. Clermont, Y. , and E. Bustos-Obregon (1968) Re-examination of spermatogonial renewal in the rat by means of seminiferous tubules mounted “in toto”.Am. J. Anat. 122: 237 – 248.

    Article  Google Scholar 

  15. Clermont, Y. , and S. C. Harvey (1965) Duration of the cycle of the seminiferous epithelium of normal, hypophysectomized and hypophysectomized - hormone treated albino rats.Endocrinol. 76: 80 – 89.

    Article  Google Scholar 

  16. Cox, B. D. , and M. F. Lyon (1975) X-ray induced dominant lethal nutations in mature and immature oocytes of guinea-pigs and golden hamsters.Mut. Res. 28: 421 – 436.

    Google Scholar 

  17. Dobson, R. L. , and J. S. Felton (1983) Female germ-cell loss from radiation and chemical exposures.Symposium on“Reproductivef Toxicology”, D. R. Mattison, Ed. , Am. J. Indust. ted. 4:nos. 1 and 2.

    Google Scholar 

  18. Ebner, V. von (1871)Untersuchungen uber den Bau der Samenkanalchen und die Entwicklung der Spermatozoiden bei den Saugethieren und beim Menschen. Leipzig.

    Google Scholar 

  19. Eddy, E. M. , S. M. Clark, D. Gong, and B. A. Fenderson (1981) Review article: Origin and migration of primordial germ cells in mammals.Gamete Res. 4: 333 – 362.

    Article  Google Scholar 

  20. Edwards, R. G. , and J. L. Sirlin (1958) The effect of 200r of X-rays on the rate of spermatogenesis and spermiogenesis in the mouse.Exp. Cell Res. 15: 522 – 528.

    Article  Google Scholar 

  21. Ehling, U. H. (1978) Specific–locus mutations in mice, InChemical Mutagens, Vol. 5, A. Hollaender, and F. J. de Serres, Eds. , Plenum Publishing Co. , New York, pp. 233 - 256.

    Google Scholar 

  22. Ehling, U. H. , D. G. Doherty, and H. V. Mailing (1972) Differential spermatogenic response of mice to the induction of dominant lethal mutations by n-propyl methanesulfonate and isopropyl methanesulfonate.Mut. Res. 15: 175 – 184.

    Google Scholar 

  23. Ehling, U. H. , and A. Neuhauser (1979) Procarbazine-induced specific-locus mutations in male mice.Mut. Res. 59: 245 – 256.

    Google Scholar 

  24. Falconer, D. S. , B. M. Slizynski, and C. Auerbach (1951) Genetical effects of nitrogen mustard in the house mouse.Jour, of Genetics10: 81 – 88.

    Google Scholar 

  25. Generoso, M. (1969) Chemical induction of dominant lethals in female mice. Genetics 61: 461 – 470.

    Google Scholar 

  26. Generoso, W. M. , personal communication.

    Google Scholar 

  27. Generoso, W. M. , J. B. Bishop, D. G. Gosslee, G. W. Newell, C. J. Sheu, and E. von Halle (1980) Heritable translocation test in mice.Mut. Res. 76: 191 – 215.

    Google Scholar 

  28. Generoso, W. M. , K. T. Cain, and S. W. Huff (1978) Chromosomal aberration effects of benzo[a]pyrene in male and female germ cells of mice.Mut. Res. 53: 126.

    Google Scholar 

  29. Generoso, W. M. , S. K. Stout, and S. W. Huff (1971) Effects of alkylating chemicals on reproductive capacity of adult female mice.Mut. Res. 13: 171 – 184.

    Google Scholar 

  30. Generoso, W. M. , K. T. Cain, and S. W. Huff (1978) Inducibility by chemical mutagens of heritable translocations, InAdvances in Modern Toxicology, W. G. Flamm and M. A. Mehlman, Eds. , Hemisphere, Washington, D. C. , pp. 109 – 129.

    Google Scholar 

  31. Generoso, W. M. , S. W. Huff, and K. T. Cain (1979) Relative rates at which dominant–lethal mutations and heritable translocations are induced by alkylating chemicals in postmeiotic male germ cells of mice.Genetics93: 163 – 171.

    Google Scholar 

  32. Generoso, W. M. , S. W. Huff, and S. K. Stout (1971) Chemically induced dominant-lethal mutations and cell killing in mouse oocytes in the advanced stages of follicular development.Mut. Res. 11: 411 – 420.

    Google Scholar 

  33. Generoso, W. M. , M. Krishna, R. E. Sotomayor, and N. L. A. Cacheiro (1977) Delayed formation of chromosome aberrations in mouse pachytene spermatocytes treated with triethylenemelamine (TEM).Genetics85: 65 – 72.

    Google Scholar 

  34. Generoso, W. M. , R. J. Preston, and J. G. Brewen (1975) 6-mercaptopurine, an inducer of cytogenetic and dominant-lethal effects in premeiotic and early meiotic germ cells of male mice.Mut. Res. 28:437–447.

    Google Scholar 

  35. Generoso, W. M. , and W. L. Russell (1969) Strain and sex variations in the sensitivity of mice to dominant-lethal induction with ethyl methanesulfonate.Mut. Res. 8: 589 – 598.

    Google Scholar 

  36. Generoso, W. M. , W. L. Russell, S. W. Huff, S. K. Stout, and D. G. Gosslee (1974) Effects of dose on the induction of dominant-lethal mutations and heritable translocations with ethyl methanesulfonate in male mice.Genetics77: 741 – 752.

    Google Scholar 

  37. Grell, R. F. , and E. E. Generoso (1982) A temporal study at the ultrastructural level of the developing pro–oocyte of Drosophila melanogaster.Chromosoma87: 49 – 75.

    Article  Google Scholar 

  38. Grell, R. F. , E. F. Oakberg, and E. E. Generoso (1980) Synaptonemal complexes at premeiotic interphase in the mouse.Proc. Natl. Acad. Sci. USA77: 6720 – 6723.

    Article  ADS  Google Scholar 

  39. Gulyas, B. J. , and D. R. Mattison (1979) Degeneration of mouse oocytes in response to polycyclic aromatic hydrocarbons.Anat. Rec. 193: 863 – 880.

    Google Scholar 

  40. Hannah–Alava, A. (1965) The premeiotic stages of spermatogenesis, InAdvances in Genetics, E. W. Caspari, Ed. , Vol. 13, Academic Press, New York, pp. 157 – 224.

    Google Scholar 

  41. Huckins, C. (1965)The initiation of spermatogenesis in the testis of the Wistar albino rat. Ph. D. dissertation, MsGill University, Montreal, Canada.

    Google Scholar 

  42. Huckins, C. (1971a) The spermatogonial stan cell population in adult rats. I. Their morphology, proliferation and maturation.Anat. Rec. 169: 533 – 558.

    Google Scholar 

  43. Huckins, C. (1971b) The spermatogonial stem cell population in adult rats. III. Evidence for a long–cycling population.Cell Tissue Kinet. 4: 335 – 349.

    Google Scholar 

  44. Huckins, C. (1972) Spermatogonial stem cell behavior in rodents, InBiology of Reproduction, Basic and Clinical Studies, Vol. Ill, J. T. Velardo and B. A. Kasprcw, Eds. , Pan American Congress of Anatomy, New Orleans, Louisiana, pp. 395 – 421.

    Google Scholar 

  45. Huckins, C. (1978) Spermatogonial intercellular bridges in whole–mounted seminiferous tubules from normal and irradiated rodent testes.Am. J. Anat. 153: 97 – 122.

    Article  Google Scholar 

  46. Huckins, C. , and E. F. Oakberg (1978) Morphological and quantitative analysis of spermatogonia in mouse testes using whole mounted seminiferous tubules II. The irradiated testis.Anat. tec. 192: 529 – 542.

    Article  Google Scholar 

  47. Jackson, H. (1958) The effects of radiomimetric chemicals on the fertility of male rats.The Journal of the Faculty of RadiologistsIX (4): 216 – 220.

    Google Scholar 

  48. Jackson, H. , B. W. Fox, and A. W. Craig (1961) Antifertility substances and their assessment in the male rodent.J. Reprod. Fertil. 2: 447 – 465.

    Article  Google Scholar 

  49. Jacox, H. W. (1939) Recovery following human ovarian irradiation.Radiology32: 538 – 545.

    Google Scholar 

  50. Krarup, T. (1969) Oocyte destruction and ovarian tumorigenesis after direct application of a chanical carcinogen (9:10–dimethyl–1:2–Benzanthrene) to the mouse ovary.Int. J. Cancer4: 61 – 75.

    Article  Google Scholar 

  51. LaValette, St. George von (1876) Uber die Genese der Samenkorper 1.Arch. Anat. Microsc. Morphol. Exp. 1: 403 – 414.

    Google Scholar 

  52. Leblond, C. P. , and Y. Clermont (1952) Definition of the stages of the cycle of the seminiferous epithelium in the rat.Ann. N. Y. Acad. Sci. 55: 548 – 573.

    Article  ADS  Google Scholar 

  53. Leonard, A. (1976) Heritable chromosome aberrations in mammals after exposure to chemicals.Rad. and Environm. Biophys. 13: 1 – 8.

    Google Scholar 

  54. Lu, C. C. , and M. Meistrich (1979) Cytotoxic effects of chemotherapeutic drugs on mouse testis cells.Cancer Res. 39: 3575 – 3582.

    Google Scholar 

  55. Mandl, A. M. (1964) The radiosensitivity of germ cells.Biol. Rev. 39: 288 – 371.

    Google Scholar 

  56. Mattison, D. R. , L. Chang, S. S. Thorgeirsson and K. Shiromizu (1981) The effects of cyclophosphamide, azathioprene, and 6-mercaptopurine on oocyte and follicle number in C57BL/6N mice.Res. Commun. Chem. Path. Pharmacol. 31: 155 – 161.

    Google Scholar 

  57. Mattison, D. R. , and M. S. Nightingale (1980) The biochemical and genetic characteristics of marine ovarian aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity and its relationship to primordial oocyte destruction by polycyclic aromatic hydrocarbons.Tox. & Appl. Pharm. 56: 399 – 408.

    Google Scholar 

  58. Mattison, D. R. , and M. S. Nightingale (1981) Murine ovarian benzo[a]pyrene metabolism and primordial oocyte destruction: A survey of nine inbred strains, InDynamics of Ovarian Function, N. B. Schwartz, and M. Hunzicker–Dunn, Eds. , Raven Press, New York, pp. 89 – 94.

    Google Scholar 

  59. Mattison, D. R. , and M. S. Nightingale (1982) Prepubertal ovarian toxicity.Banbury Report11: 395 – 409.

    Google Scholar 

  60. Mintz, B. (1960) Embryological phases of nammalian gametogenesis.J. Cell Comp. Physiol. 56; Supp. 1: 31 – 48.

    Article  Google Scholar 

  61. Monesi, V. (1962) Autoradiographic study of DNA synthesis and the cell cycle in spermatogonia and spermatocytes of mouse testis using tritiated thymidine. J. Cell, Biol. 14: 1 – 18.

    Google Scholar 

  62. Monesi, V. (1962) Relation between X ray sensitivity and stages of the cell cycle in spermatogonia of the mouse.Rad. Res. 17: 809 – 838.

    Google Scholar 

  63. Murray, J. M. (1931) A study of the histological structure of the mouse ovaries following exposure to roentgen irradiation.Am. J. Roentgenol. Radium Ther. Nucl. Med. 25: 1 – 45.

    Google Scholar 

  64. Necas, E. (1982) Stem cell (CFU-s) proliferation in sublethally irradiated mice.Cell Tissue Kinet. 15: 667 – 672.

    Google Scholar 

  65. Oakberg, E. F. (1955) Degeneration of spermatogonia of the mouse following exposure to X–rays, and stages in the mitotic cycle at which cell death occurs.J. Morph. 97:39– 54.

    Google Scholar 

  66. Oakberg, E. F. (1956a) A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal.Am. J. Anat. 99: 391 – 413.

    Google Scholar 

  67. Oakberg, E. F. (1956b) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium.Am. J. Anat. 99: 507 – 516.

    Article  Google Scholar 

  68. Oakberg, E. F. (1962) Gamma-ray sensitivity of oocytes of immature mice.Proc. Soc. Expl. Biol. Med. 109: 763 – 767.

    Google Scholar 

  69. Oakberg, E. F. (1966) Effect of 25R of X-rays at 10 days of age on oocyte numbers and fertility of female mice, InRadiation and Aging, P. J. Lindop, and G. A. Sacher, Eds. , Taylor & Frances LTD, London, England, pp. 293 – 306.

    Google Scholar 

  70. Oakberg, E. F. (1968) Relationship between stages of follicular development and RNA synthesis in the mouse oocyte.Mut. Res. 6: 155 – 165.

    Google Scholar 

  71. Oakberg, E. F. (1971) Spermatogonial stem-cell renewal in the mouse.Anat. Rec. 169: 515 – 532.

    Google Scholar 

  72. Oakberg, E. F. (1975) Effects of radiation on the testis, InHandbook of Physiology, Section 7:Endocrinology, Volume V, Male Reproductive System, R. O. Greep, E. B. Astwood, D. W. Hamilton, and S. R. Geiger, Eds. , American Physiological Society, Vfeshington, D. C. , pp. 233 – 243.

    Google Scholar 

  73. Oakberg, E. F. (1978) Differential spermatogonial stem-cell survival and mutation frequency.Mut. Res. 50: 327 – 340.

    Google Scholar 

  74. Oakberg, E. F. (1979) Timing of oocyte maturation in the mouse and its relevance to radiation–induced cell killing and mutational sensitivity.Mut. Res. 59: 39 – 48.

    Google Scholar 

  75. Oakberg, E. F. (1981) The age at which the long-cycling spermatogonial stem-cell population is established in the mouse, InDevelopment and Function of the Reproductive Organs, A. G. Byskov, and H. Peters, Eds. , Excerpta Medica, Amsterdam, pp. 149 – 152.

    Google Scholar 

  76. Oakberg, E. F. , Crosthwait, C. D. , and Raymer, G. D. (1982) Spermatogenic stage sensitivity to 6-mercaptopurine in the mouse.Mut. Res. 94: 165 – 178.

    Google Scholar 

  77. Oakberg, E. F. , and C. D. Crosthwait (1983) The effect of ethyl-methyl- and hydroxyethyl-nitrosourea on the mouse testis.Mut. Res. 108: 337 – 344.

    Article  Google Scholar 

  78. Oakberg, E. F. , and R. L. DiMinno (1960) X-ray sensitivity of primary spermatocytes of the mouse.Intern. J. Radiation Biol. 2: 196 – 209.

    Article  Google Scholar 

  79. Oakberg, E. F. , and C. Huckins (1976)-Spermatogonial stem cell renewal in the mouse as revealed by H-thymidine labeling and irradiation, InStem Cells of Renaming Cell Populations, A. B. Cairnie, P. K. Lala, and D. G. Osmond, Eds. , Academic Press, New York, pp. 287 – 302.

    Google Scholar 

  80. Parsons, D. F. (1962) An electron microscope study of radiation damage in the mouse oocytes.J. Cell. Biol. 14: 31 – 48.

    Article  Google Scholar 

  81. Partington, M. , B. W. Fox, and H. Jackson (1964) Comparative action of some urethane sulphonic esters on the cell population of the rat testis. Exptl.Cell Res. 33: 78 – 88.

    Article  Google Scholar 

  82. Pfcdersen, T. , and H. Peters (1968) Proposal for a classification of oocytes and follicles in the mouse ovary.J. Reprod. Fertil. 17: 555 – 557.

    Article  Google Scholar 

  83. Peters, H. (1969) The effect of radiation in early life on the morphology and reproductive function of the mouse ovary, InAdvances in Reproductive Physiology, A. Mclaren, Ed. , Academic Press, New York, pp. 149 – 185.

    Google Scholar 

  84. Regaud, C. (1901) Etudes sur la structure des tubes seminferes et sur la spermatogenese chez les Martmiferes.Arch. Anat. Micr. 4: 101 – 156.

    Google Scholar 

  85. Regaud, C. , et A. Lacassagne (1927) Effects histophysiologique des Rayons de Roentgen et de Becquerel– Curie sur les tissues adultes normaux des animaux superieurs.Arch, de’l Institute due Radium, Vol. 1.

    Google Scholar 

  86. Rooij, D. G. de (1973) Spermatogonial stem cell renewal in the mouse 1. Normal situation.Cell Tissue Kinet. 6: 281 – 287.

    Google Scholar 

  87. Roosen–Runge, E. C. (1962) The process of spermatogenesis in mammals.Biol. Rev.37: 343 – 377.

    Google Scholar 

  88. Rowley, M. J. , D. R. Leach, G. A. Warner, and C. G. Heller (1974) Effect of graded doses of ionizing radiation on the human testis.Rad. Res. 59: 665 – 678.

    Google Scholar 

  89. Rubin, N. H. (1982) Influence of the circadian rhythm in cell division on radiation-induced mitotic delay in vivo.Rad. Res. 89: 65 – 76.

    Google Scholar 

  90. Ruiter–Bootsma, A. L. de, M. F. Kramer, D. G. de Rooij, and J. A. G. Davids (1976) Response of stem cells in the mouse testis to fission neutrons of 1 MeV energy and 300 k V X– rays, methodology, dose-response studies, relative biological effectiveness.Rad. Res. 67: 56 – 68.

    Google Scholar 

  91. Russell, W. L. (1965) Effect of the interval between irradiation and conception on mutation frequency in female mice.Proc. Natl. Acad. Sci. USA54: 1552 – 1557.

    Article  ADS  Google Scholar 

  92. Russell, W. L. , E. M. Kelly, P. R. Hunsicker, J. W. Bangham, S. C. Maddux, and E. L. Phipps (1979) Specific–locus test shows ethylnitrosourea to be the most potent mutagen in the mouse.Proc. Natl. Acad. Sci. USA76(11) -. 5818 – 5819.

    Google Scholar 

  93. Sapsford, C. S. (1962) Changes in the cells of the sex cords and seminiferous tubules during the development of the testis of the rat and mouse.Aust. jJ. Zool. 10: 178 – 195.

    Google Scholar 

  94. Selby, P. B. (1973) X-ray-induced specific–locus mutation rate in newborn male mice.Mat. Res. 18: 63 – 75.

    Google Scholar 

  95. Sharma, R. K. , G. T. Roberts, F. M. Johnson, and H. V. Mailing (1979) Translocation and sperm abnormality assays in mouse spermatogonia treated with procarbazine.Mut. Res. 67: 385 – 388.

    Google Scholar 

  96. Sotomayor, R. E. , and R. B. Qjmming (1975) Induction of translocations by cyclophosphamide in different germ cell stages of male mice: Cytological characterization and transmission.Mut. Res. 27: 375 – 388.

    Google Scholar 

  97. Steinberger, E. (1962) A quantitative study of the effect of an alkylating agent (triethylenemelamine) on the seminiferous epithelium of rats.J. Reprod. Eertil. 3: 250 – 259.

    Article  Google Scholar 

  98. Walker, H. C. (1977) Comparative sensitivities of meiotic prcphase stages in male mice to chromosome damage by acute X– and chronic gamma-irradiation.Mut. Res. 44: 427 – 432.

    Google Scholar 

  99. Witschi, E. (1948) Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds.Contrib. Embryol.Cctrnegie Inst. 32: 67 – 80.

    Google Scholar 

  100. Zimmer, K. (1953) Rontgenbestrahlung der Ovarien und nachfolgenden Konzeption.Strahlen Therapie92: 117 – 122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Oakberg, E.F. (1984). Germ Cell Toxicity: Significance in Genetic and Fertility Effects of Radiation and Chemicals. In: Chu, E.H.Y., Generoso, W.M. (eds) Mutation, Cancer, and Malformation. Environmental Science Research, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2399-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2399-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9463-4

  • Online ISBN: 978-1-4613-2399-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics