Skip to main content

Laser Light Scattering in Micellar Systems

  • Chapter
Dynamic Light Scattering

Abstract

Amphiphiles (i.e., molecules possessing both hydrocarbon and polar moieties) display a variety of aggregative properties when dissolved in aqueous and nonaqueous solvents. Such behavior in general reflects the tendency for amphiphiles to associate into macromolecular structures in which solvent contact is minimized with those moieties that interact poorly with the solvent and maximized with those moieties that interact favorably. In the case of aqueous systems, such amphiphile aggregates were first termed micelles by McBain(1) in 1913. Early views on micelle structure and thermodynamics were developed by Hartley,(2) who investigated the properties of aqueous solutions of paraffin chain salts nearly 50 years ago. Using a variety of physical chemical techniques, including diffusion methods, Hartley proposed that micelles in dilute solution had a spherical structure in which the hydrocarbon chains formed a liquidlike core inside the micelle with the polar head groups of the amphiphiles located at the micelle surface (see Figure 1). Hartley attributed the driving force for micellization to the unfavorable interaction between hydrocarbon and water, the so-called “hydrophobic effect”(3), and further recognized that this force would be opposed, in the case of ionic amphiphiles, by the electrostatic interactions in the micellar surface. These views have been largely confirmed by many subsequent experimental studies and provide the starting point of modern thermodynamic treatments of micelle formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. McBain, Colloids and their viscosity (discussion), Trans. Faraday Soc. 9, 99 (1913).

    Google Scholar 

  2. G. S. Hartley, Aqueous Solutions of Paraffin Chain Salts, Hermann, Paris (1936).

    Google Scholar 

  3. C. Tanford, The Hydrophobic Effect, Wiley, New York (1972).

    Google Scholar 

  4. H. Wennerström and B. Lindman, Micelles. Physical chemistry of surfactant association, Phys. Rep. 52, 1–86 (1979).

    Article  Google Scholar 

  5. B. Lindman and H. Wennerström, Amphiphile aggregation in aqueous solution, Top. Curr. Chem. 87, 1–83 (1980).

    Article  CAS  Google Scholar 

  6. H.-F. Eicke, Surfactants in nonpolar solvents, Top. Curr. Chem. 87, 84 (1980).

    Google Scholar 

  7. P. Debye, Light scattering in soap solutions, Ann. N.Y. Acad. Sci. 51, 575 (1949).

    Article  CAS  Google Scholar 

  8. P. Debye and E. W. Anacker, Micelle shape from dyssymetry measurements, J. Phys. Colloid Chem. 55, 644 (1959).

    Google Scholar 

  9. K. J. Mysels and L. H. Princen, Light scattering by some lauryl sulfate solutions, J. Phys. Chem. 63, 1696 (1959).

    Article  CAS  Google Scholar 

  10. H. F. Huisman, Light scattering of solutions of ionic detergents, Proc. Kon. Ned. Akad. Wet., Ser. B 67, 367, 376, 388, 407 (1964).

    CAS  Google Scholar 

  11. J. P. Kratohvil and H. T. Dellicolli, Measurement of the size of micelles: the case of sodium taurodeoxycholate, Fed. Proc. 29 (4), 1335 (1970).

    CAS  Google Scholar 

  12. W. Prins and J. J. Hermans, Light scattering by solutions of some sodium alkyl-l-sulfates, Proc. Kon. Ned. Akad. Wet., Ser. B 59, 298 (1956).

    CAS  Google Scholar 

  13. M. F. Emerson and A. Holtzer, On the ionic strength dependence of micelle number III, J. Phys. Chem. 71, 1898 (1967).

    Google Scholar 

  14. P. Mukerjee, The size distribution of small and large micelles: A multiple equilibrium analysis, J. Phys. Chem. 76, 565 (1972).

    Article  CAS  Google Scholar 

  15. J. N. Israelachvilli, D. J. Mitchell, and B. W. Ninham, Theory of self-assembly of hydrocarbon ampliphiles into micelles and bilayers, J. Chem. Soc. Faraday Trans. 2 72, 1525 (1976).

    Article  CAS  Google Scholar 

  16. E. Ruckenstein and R. Nagarajan, On critical concentrations in micellar solutions, J. Colloid Interface Sci. 57, 388 (1976).

    Article  CAS  Google Scholar 

  17. P. N. Pusey, Macromolecular diffusion, in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds., Plenum, New York (1974).

    Google Scholar 

  18. G. D. J. Phillies, G. B. Benedek, and N. A. Mazer, Diffusion in protein solutions at high concentration: A study by quasielastic light scattering spectroscopy, J. Chem. Phys. 65, 1883 (1976).

    Article  CAS  Google Scholar 

  19. R. J. Cohen and G. B. Benedek, The functional relationship between polymerization and catalytic activity of beef liver glutamate dehydrogenase. I. Theory, J. Mol. Biol. 108, 151 (1976).

    Article  CAS  Google Scholar 

  20. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics, Wiley, New York, (1976).

    Google Scholar 

  21. A. Einstein, Investigations on the Theory of the Brownian Movement, Dover, New York (1956).

    Google Scholar 

  22. N. A. Mazer, G. B. Benedek, and M. C. Carey, An investigation of the micellar phase of sodium dodecyl sulfate in aqueous sodium chloride solutions using quasielastic light scattering spectroscopy, J. Phys. Chem. 80, 1075 (1976).

    Article  CAS  Google Scholar 

  23. N. A. Mazer, M. C. Carey, and G. B. Benedek, Size, shape, and thermodynamics of sodium dodecyl sulfate micelles using quasielastic light scattering spectroscopy, in Micellization, Solubilization, and Microemulsions, Vol. 1, K. L. Mittal, ed., pp. 359–382, Plenum, New York (1977).

    Google Scholar 

  24. M. Corti and V. Degiorgio, Investigation of aggregation phenomena in aqueous sodium dodecyl sulfate solutions at high NaCl concentration by quasielastic light scattering, in Solution Chemistry of Surfactants, K. L. Mittal, ed., p. 377, Plenum, New York (1979).

    Google Scholar 

  25. P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y. Young, and M. C. Carey, Thermodynamic analysis of the growth of soldium dodecyl sulfate micelles, J. Phys. Chem. 1044 (1980).

    Google Scholar 

  26. D. F. Nicoli, D. R. Dawson, and H. W. Offen, Pressure dependence of micelle size by photon correlation spectroscopy, Chem. Phys. Lett. 66, 291 (1979).

    Article  CAS  Google Scholar 

  27. M. Corti and V. Degiorgio, Critical behavior of a micellar solution, Phys. Rev. Lett. 45, 1045 (1980).

    Google Scholar 

  28. M. Zulauf and H.-F. Eicke, Inverted micelles and microemulsions in the ternary system H20/aerosol-OT/isooctane as studied by photon correlation spectroscopy, J. Phys. Chem. 83, 480 (1979).

    Article  CAS  Google Scholar 

  29. A. M. Cazabat, D. Langevin, and A. Pouchelson, Light scattering study of water—oil microemulsions, J. Colloid Interface Sci. 73, 1 (1980).

    Article  CAS  Google Scholar 

  30. N. A. Mazer, M. C. Carey, R. F. Kwasnick, and G. Benedek, Quasielastic light scattering studies of aqueous biliary lipid systems: Size, shape, and thermodynamics of bile salt micelles, Biochemistry 18, 3064 (1979).

    Article  CAS  Google Scholar 

  31. N. A. Mazer, G. B. Benedek, and M. C. Carey, Quasielastic light scattering studies of aqueous biliary lipid systems: Mixed micelle formation in bile salt—lecithin solutions, Biochemistry 19, 601 (1980).

    Article  CAS  Google Scholar 

  32. N. A. Mazer, Quasielastic light scattering studies of micelle formation, solubilization, and precipitation in aqueous biliary lipid systems, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1978).

    Google Scholar 

  33. V. G. Cooper, S. Yedgar, and Y. Barenholz, Diffusion coefficients of mixed micelles of Triton X-100 and sphingomyelin and of sonicated sphingomyelin liposomes, measured by autocorrelation spectroscopy of Rayleigh scattering light, Biochim. Biophys. Acta 363, 86 (1974).

    Article  CAS  Google Scholar 

  34. M. Corti, V. Degiorgio, R. Ghidoni, S. Sonnino, and J. Tettamanti, Laser-light scattering investigations of the micellar properties of gangliosides, Chem. Phys. Lipids 26, 225 (1980).

    Article  CAS  Google Scholar 

  35. N. A. Mazer, M. C. Carey, and G. B. Benedek, Quasielastic light scattering studies of model bile systems, in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, and C. A. Sacchi, eds., Plenum, New York (1980), pp. 127–150.

    Google Scholar 

  36. D. E. Koppel, Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants, J. Chem. Phys. 57, 4814 (1972).

    Article  CAS  Google Scholar 

  37. N. A. Mazer, Data analysis for light scattering studies of macromolecular polydispersity: An extension of the method of cumulants, S.B. thesis, Massachusetts Institute of Technology (1973).

    Google Scholar 

  38. G. D. J. Phillies, Effects of intermacromolecular interactions on diffusion. 1. Two-component solutions, J. Chem. Phys. 60, 976 (1974).

    Article  CAS  Google Scholar 

  39. G. K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction, J. Fluid Mech. 74, 1 (1976).

    Article  Google Scholar 

  40. C. W. Pyun and M. Fixman, Frictional coefficient of polymer molecules in solution, J. Chem. Phys. 41, 937 (1964).

    Article  CAS  Google Scholar 

  41. B. D. Fair and A. M. Jamieson, Effect of electrodynamic interactions on the translational diffusion of bovine serum albumin at finite concentrations, J. Colloid Interface Sci. 73, 130 (1980).

    Google Scholar 

  42. C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations, J. Phys. Chem. 82, 1375 (1978).

    Google Scholar 

  43. J. P. Kratohvil, The concentration dependence of micelle aggregation and the shape of micelles of sodium dodecyl sulfate and hexadecyltrimethylammonium bromide, Chem. Phys. Lett. 60, 238 (1979).

    Article  CAS  Google Scholar 

  44. D. McQueen and J. Hermans, Determination of the translational diffusivity of detergent micelles from the spectrum of scattered light, J. Colloid Interface Sci. 39, 358 (1975).

    Google Scholar 

  45. R. C. Murray and G. S. Hartley, Equilibrium between micelles and simple ions, with particular reference to the solubility of long-chain salts, Trans. Faraday Soc. 31, 183 (1935).

    Article  CAS  Google Scholar 

  46. E. I. Franses, H. T. Davis, W. G. Miller, and L. E. Scriven, Nature of large aggregates in supercooled aqueous solutions of sodium dodecyl sulfate, J. Phys. Chem. 84, 2413 (1980).

    Article  CAS  Google Scholar 

  47. U. Hendriksson, L. Odberg, J. C. Eriksson, and L. Westman, Nitrogen-14 nuclear magnetic relaxation in aqueous micellar solutions of n-hexadecyltrimethylammonium bromide and chloride, J. Phys. Chem. 81, 76 (1977).

    Article  Google Scholar 

  48. J. Ulmium and H. Wennerström, Proton NMR bandshape for large aggregates; micellar solutions of hexadecyltrimethylammonium bromide, J. Mag. Res. 28, 309 (1977).

    Google Scholar 

  49. D. Stigter, Intrinsic viscosity and flexibility of rodlike detergent micelles, J. Phys. Chem. 70, 1323 (1966).

    Google Scholar 

  50. V. Luzzati, H. Mustacchi, A. Skoulios, and F. Husson, La structure des colloides d’association. I. Les phases liquide—crystallines des systemes amphiphile-eau, Acta Crystallogr. 13, 660 (1960).

    Article  CAS  Google Scholar 

  51. E. J. Staples and G. J. T. Tiddy, Nuclear magnetic resonance technique to distinguish between micelle size changes and secondary aggregation in anionic and nonionic surfactant solutions, J. Chem. Soc. Faraday I 74, 2530 (1978).

    Article  CAS  Google Scholar 

  52. S. Hayashi and S. Ikeda, Micelle size and shape of sodium dodecyl sulfate in concentrated NaCl solutions, J. Phys. Chem. 84, 744 (1980).

    Article  CAS  Google Scholar 

  53. P. Llanos and R. Zana, Use of pyrene examer formation to study the effect of NaCl on the structure of sodium dodecyl sulfate micelles, J. Phys. Chem. 84, 3339 (1980).

    Article  Google Scholar 

  54. K. L. Mittal, ed., Micellization, Solubilization and Microemulsions, Vol. 1, Plenum, New York (1977); see discussion on pp. 419–428.

    Google Scholar 

  55. J. E. Liebner and J. Jacobus, Charged micelle shape and size, J. Phys. Chem. 81, 130 (1977).

    Article  Google Scholar 

  56. J. Briggs, D. F. Nicoli, and R. Ciccolello, Light scattering from polydisperse SDS micellar solutions, Chem. Phys. Lett. 73, 149 (1980).

    Article  CAS  Google Scholar 

  57. N. Mazer, P. Missel, H. Roder, and W. Kanzig, Flexibility of rodlike SDS micelles, unpublished results.

    Google Scholar 

  58. A. Peterlin, Light scattering by non-Gaussian macromolecular coils, in Electromagnetic Scattering, M. Kerker, ed., Pergamon, Elmsford, New York (1963), pp. 357–375.

    Google Scholar 

  59. G. Porte, J. Appell, and Y. Poggi, Experimental investigations on the flexibility of elongated atylpyridinium bromide micelles, J. Phys. Chem. 84, 3105 (1980).

    Article  CAS  Google Scholar 

  60. J. Appell and G. Porte, An investigation on the micellar shape using angular dissymmetry of light scattered by cetylpyridinium bromide, J. Colloid Interface Sci. 81, 85 (1981).

    Article  CAS  Google Scholar 

  61. R. J. M. Tausk and J. Th. G. Overbeek, Physical chemical studies of short-chain lecithin homologues. IV. A simple model for the influence of salt and the alkyl chain length on the micellar size, Biophys. Chem. 2, 175 (1974).

    Article  CAS  Google Scholar 

  62. M. Corti and V. Degiorgio, Quasi-elastic light scattering study of intermicellar interactions in aqueous sodium dodecyl sulfate solutions, J. Phys. Chem. 85, 711 (1981).

    Article  CAS  Google Scholar 

  63. P. J. Missel, N. A. Mazer, M. C. Carey, and G. B. Benedek, Thermodynamics of the sphere-to-rod transition in alkyl sulfate micelles, in Solution Behavior of SurfactantsTheoretical and Applied Aspects, K. L. Mittal and E. J. Fendler, eds., Plenum, New York (1982).

    Google Scholar 

  64. A. Rohde and E. Sackmann, Quasielastic light scattering studies of micellar sodium dodecyl sulfate solutions at the low concentration limit, J. Colloid Interface Sci. 70, 494 (1979).

    Article  CAS  Google Scholar 

  65. M. J. Stephen, Spectrum of light scattered from charged macromolecules in solution, J. Chem. Phys. 55, 3878 (1971).

    Article  CAS  Google Scholar 

  66. M. Tanaka, S. Kaneshina, K. Shin-no, T. Okajama, and T. Tomida, Partial molal volumes of surfactant and its homologous salts under high pressure, J. Colloid Interface Sci. 46, 132 (1974).

    Article  CAS  Google Scholar 

  67. E. Vikingstad, A. Skauge, and H. Hoiland, Effect of pressure and temperature on the partial molal volume and compressibility of sodium decanoate micelles, J. Colloid Interface Sci. 72, 59 (1979).

    Article  CAS  Google Scholar 

  68. G. Lindblom, B. Lindman, and L. Mandell, Effect of micellar shape and solubilization on counter-ion binding studied by 81 Br NMR, J. Colloid Interface Sci. 42, 400 (1973).

    Article  CAS  Google Scholar 

  69. N. Mazer, J. Peetermans, and G. Benedek, Effect of pressure on the sphere-to-rod micelle transition, unpublished results.

    Google Scholar 

  70. P. Ekwall, H. Eikrem, and L. Mandell, The properties and structures of aqueous sodium caprylate solutions. I. The densities and partial specific volumes, Acta Chem. Scand. 17, 111 (1963).

    Google Scholar 

  71. J. C. Lang and R. D. Morgan, Nonionic surfactant mixtures. I. Phase equilibria in C10E4–H2O and closed-loop coexistence, J. Chem. Phys. 13, 5849 (1980).

    Article  Google Scholar 

  72. R. R. Balmbra, J. S. Clunie, J. M. Corkil, and J. F. Goodman, Effect of temperature on the micelle size of a homogeneous non-ionic detergent, Trans. Faraday Soc. 58, 1661 (1962).

    Article  CAS  Google Scholar 

  73. K. Shinoda and H. Arai, The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier, J. Phys. Chem. 68, 3485 (1964).

    Article  CAS  Google Scholar 

  74. P. H. Elworthy and C. B. Macfarlane, Chemistry of nonionic detergents. Part V. Micellar structures of a series of synthetic nonionic detergents, J. Chem. Soc, 907 (1963).

    Google Scholar 

  75. K. W. Kerrmann, J. G. Brushmiller, and W. I. Courchene, Micellar properties and critical opalescence of dimethylalkylphosphine oxide solutions, J. Phys. Chem. 70, 2909 (1966).

    Article  Google Scholar 

  76. G. Benedek, Spectra of light scattering by critical fluctuations, in Light Scattering Spectra of Solids, G. Wright, ed. Springer-Verlag, Berlin, (1968).

    Google Scholar 

  77. K. Kawasaki, Mode coupling and critical dynamics, in Phase Transitions and Critical Phenomena, Vol. 5a, C. Domb and M. S. Green, eds., Academic, London (1976).

    Google Scholar 

  78. R. Kjellander and E. Florin, Water structure and changes in thermal stability of the system polyfethylene oxide)–water, J. Chem. Soc. Faraday Trans. 1 77, 2053 (1981).

    Article  CAS  Google Scholar 

  79. S. Saeki, N. Kuwahara, M. Nakata, and M. Kaneko, Upper and lower critical solution temperatures in polyethylene glycol) solutions, Polymer 17, 685 (1976).

    Article  CAS  Google Scholar 

  80. M. C. Carey and D. M. Small, The characteristics of mixed micellar solutions with particular reference to bile, Am. J. Med. 49, 590 (1970).

    Article  CAS  Google Scholar 

  81. M. C. Carey and D. M. Small, Physical chemistry of cholesterol solubility in bile—relationship to gallstone formation and dissolution in man, J. Clin. Invest. 61, 998 (1978).

    Article  CAS  Google Scholar 

  82. D. M. Small, Size and structure of bile salt micelles, influence of structure, concentration, counterion concentration, pH, and temperature, Adv. Chem. Ser. No. 84, 31 (1968).

    Article  Google Scholar 

  83. P. Schurtenberger, N. Mazer, and W. Kanzig, Micelle-to-vesicle transition in bile salt-lecithin solutions, J. Phys. Chem. (in press).

    Google Scholar 

  84. D. M. Small, Physical-chemical studies of cholesterol gallstone formation, Gastroenterology 52, 607 (1967).

    CAS  Google Scholar 

  85. N. A. Mazer, M. C. Carey, R. F. Kwasnick, and G. B. Benedek, Quasielastic light scattering spectroscopic studies of aqueous bile salt, bile salt-lecithin and bile salt-lecithin-cholesterol solutions, in Micellization, Solubilization and Microemulsions, Vol. 1, K. L. Mittal, ed., Plenum, New York (1977), p. 383.

    Google Scholar 

  86. F. A. Chen, A. Chrzenszcyk, and B. Chu, Quasielastic laser light scattering of phosphatidylcholine vesicles, J. Chem. Phys. 64, 3403 (1976).

    Article  CAS  Google Scholar 

  87. N. Ostrowsky and D. Sornette, Stability and fusion of visicles, in Light Scattering in Liquids and Macromolecular Solutions, V. Degiorgio, M. Corti, and M. Giglio, ed., Plenum, New York (1980), p. 125.

    Google Scholar 

  88. C. Gahwiller, C. von Planta, D. Schmidt, and H. Steffen, Untersuchungen über die grosse, struktur und dynamik von gallensaure/lecithin—mischmicellar, Z. Naturforsch. C32, 748 (1977).

    Google Scholar 

  89. N. A. Mazer, G. B. Benedek, and M. C. Carey, What determines the solubilization of cholesterol in bile? Gastroenterology Abst., Nov. (1978).

    Google Scholar 

  90. A. S. Walton, The Formation and Properties of Precipitates, Interscience, New York (1967).

    Google Scholar 

  91. K. Shinoda and S. Friberg, Microemulsions: colloidal aspects, Adv. Colloid Interface Sci. 4, 281 (1975).

    Article  CAS  Google Scholar 

  92. N. Mazer, P. Schurtenberger, W. Kanzig, M. Carey, and R. Preisig, Quasielastic light scattering (QLS) studies of native dog bile—comparison with model systems, Gastroenterology Abst. May (1981).

    Google Scholar 

  93. S. Yedgar, Y. Barenholz, and V. G. Cooper, Molecular weight, shape and structure of mixed micelles of Triton X-100 and sphingomyelin, Biochim. Biophys. Acta 363, 98 (1974).

    Article  CAS  Google Scholar 

  94. W. Curatolo, D. M. Small, and G. G. Shipley, Phase behavior and structural characteristics of hydrated bovine brain gangliosides, Biochim. Biophys. Acta 468, 11 (1977).

    Article  CAS  Google Scholar 

  95. A. A. Calje, W. G. M. Agterob, and A. Vrij, Light scattering of a concentrated W—O micro emulsion; Application of modern fluid theories, in Micellization, Solubilization and Microemulsions, Vol. 2, K. L. Mittal, ed., Plenum, New York (1977), p. 779.

    Google Scholar 

  96. R. Finsy, A. Devriese, and H. Lekkerkerker, Light scattering study of the diffusion of interacting particles, J. Chem. Soc, Faraday Trans. 2 76, 967 (1980).

    Article  Google Scholar 

  97. E. Gulari, B. Bedwell, and S. Alkhafaji, Quasi-elastic light scattering investigation of microemulsions, J. Colloid Interface Sci. 77, 202 (1980).

    Article  CAS  Google Scholar 

  98. H.-F. Eicke and R. Kubik, The optical matching phenomenon in water-oil micro-emulsions, Ber. Bunseges Phys. Chem. 84, 36 (1980).

    CAS  Google Scholar 

  99. J. Rogers and P. A. Winsor, Change in the optic sign of the lamellar phase (G) in the aerosol OT—water system with composition or temperature, J. Colloid Interface Sci. 30, 247 (1969).

    Article  CAS  Google Scholar 

  100. L. E. Scriven, Equilibrium bicontinuous structures, in Micellization, Solubilization, and Microemulsions, Vol. 2, K. L. Mittal, ed., Plenum, New York (1977), p. 877

    Google Scholar 

  101. B. Lindman, N. Kamenka, T.-M. Kathopoulis, B. Brun, and P.-G. Nilsson, Translational diffusion and solution structure of microemulsions, J. Phys. Chem. 84, 2485 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Mazert, N.A. (1985). Laser Light Scattering in Micellar Systems. In: Pecora, R. (eds) Dynamic Light Scattering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2389-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2389-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9459-7

  • Online ISBN: 978-1-4613-2389-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics