Advertisement

Particle Interactions

  • P. N. Pusey
  • R. J. A. Tough
Chapter

Abstract

It is well known that the diffusion coefficients of particles suspended in a liquid depend on the concentration of the suspension. The cause of such concentration dependence is, of course, interparticle interactions. In the early days of dynamic light scattering (DLS), interactions were generally regarded as a nuisance whose effects could be removed by extrapolation of data to zero concentration. Thus “free-particle” properties were obtained and such information as particle sizes and shapes could be deduced. More recently, however, there has been growing interest in interactions themselves, their nature and effects. This interest is partly academic since concentrated particle suspensions provide a challenging many-body problem to which modern statistical mechanical and hydrodynamical theories can be applied. The subject is also of considerable practical importance because many processes in industry (paints, foods, detergents, etc.) and biology involve suspensions in which the particles occupy a significant fraction of the total volume.

Keywords

Dynamic Light Scattering Hard Sphere Effective Diffusion Coefficient Brownian Particle Hydrodynamic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    Colloid Stability, Faraday Discussions of the Chemical Society, Vol. 65, The Chemical Society, London (1978).Google Scholar
  2. 2.
    A. Bouiller, J. P. Boon, and P. Deguent, Photon correlation study of Brownian motion, J. Phys. (Paris) 39, 159–165 (1978).CrossRefGoogle Scholar
  3. 3.
    G. L. Paul and P. N. Pusey, Observation of a long-time tail in Brownian motion, J. Phys. A: Math., Gen. 14, 3301–3327 (1981).CrossRefGoogle Scholar
  4. 4.
    Selected Papers on Noise and Stochastic Processes, N. Wax, ed., Dover, New York (1954).Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, London (1959).Google Scholar
  6. 6.
    G. Jacobs and S. Harris, Macromolecular self-diffusion and momentum autocorrelation functions in dilute solutions, J. Chem. Phys. 67, 5655–5657 (1977).CrossRefGoogle Scholar
  7. 7.
    A. R. Altenberger, The role of inertial effects in macroparticle diffusion, J. Polym. Sci. Polym. Phys. Ed. 17, 1317–1324 (1979).CrossRefGoogle Scholar
  8. 8.
    M. B. Weissman and B. R. Ware, Applications of fluctuation transport theory, J. Chem. Phys. 68, 5069–5076 (1978).CrossRefGoogle Scholar
  9. 9.
    M. B. Weissman, Quasielastic light scattering from solutions in the small wave vector limit, J. Chem. Phys. 72, 231–233 (1980).CrossRefGoogle Scholar
  10. 10.
    P. N. Pusey, Some experiments using quasi-elastic light scattering, in Light Scattering in Liquids and Macromolecular Solutions, ( V. Degiorgio, M. Corti, and M. Giglio, eds.), Plenum, New York (1980).Google Scholar
  11. 11.
    W. Hess, Diffusion coefficients in colloidal and polymeric solutions, in Light Scattering in Liquids and Macromolecular Solutions, ( V. Degiorgio, M. Corti, and M. Giglio, eds.) Plenum, New York (1980).Google Scholar
  12. 12.
    B. J. Ackerson, Brownian motion of interacting particles, University of Colorado, Ph.D. thesis (1976).Google Scholar
  13. 13.
    B. J. Ackerson, Correlations for interacting Brownian particles, J. Chem. Phys. 64, 242–246 (1976).CrossRefGoogle Scholar
  14. 14.
    B. J. Ackerson, Correlations for interacting Brownian particles, II, J. Chem. Phys. 69, 684–690 (1978).CrossRefGoogle Scholar
  15. 15.
    G. K. Batchelor, Sedimentation in a dilute suspension of spheres, J. Fluid Mech. 52, 245–268 (1972).CrossRefGoogle Scholar
  16. 16.
    G. K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction, J. Fluid Mech. 74, 1–29 (1976).CrossRefGoogle Scholar
  17. 17.
    B. U. Felderhof, Hydrodynamic interaction between two spheres, Physica 89A, 373–384 (1977).CrossRefGoogle Scholar
  18. 18.
    B. U. Felderhof, Diffusion of interacting Brownian particles, J. Phys. A: Math. Gen. 11, 929–937 (1978).CrossRefGoogle Scholar
  19. 19.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic, London (1976).Google Scholar
  20. 20.
    J. C. Brown, P. N. Pusey, and R. Dietz, Photon correlation study of polydisperse samples of polystyrene in cyclohexane, J. Chem. Phys. 62, 1136–1144 (1975).CrossRefGoogle Scholar
  21. 21.
    P. N. Pusey, Intensity fluctuation spectroscopy of charged Brownian particles: the coherent scattering function, J. Phys. A: Math. Gen. 11, 119–135 (1978).CrossRefGoogle Scholar
  22. 22.
    P. N. Pusey, The study of Brownian motion by intensity fluctuation spectroscopy, Phil. Trans. R. Soc. London A293, 429–439 (1979).CrossRefGoogle Scholar
  23. 23a.
    A. Vrij, Influence of polydispersity on the light scattering of concentrated suspensions of spherical particles, Chem. Phys. Lett. 53, 144–147 (1978)CrossRefGoogle Scholar
  24. 23b.
    Light scattering of a concentrated multicomponent system of hard spheres in the Percus-Yevick approximation, J. Chem. Phys. 69, 1742–1747 (1978).CrossRefGoogle Scholar
  25. 24.
    B. J. Berne and R. Pecora, Dynamic Light Scattering, Wiley, New York (1976).Google Scholar
  26. 25.
    R. Zwanzig, Elementary derivation of time-correlation formulas for transport coefficients, J. Chem. Phys. 40, 2527–2533 (1964).CrossRefGoogle Scholar
  27. 26.
    A. R. Altenberger, On the theory of generalized diffusion processes, Acta Phys. Pol. A46, 661–666 (1974).Google Scholar
  28. 27.
    A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut, and W. G. M. Agterof, Application of modern concepts in liquid state theory to concentrated particle dispersions, in Colloid Stability, Faraday Discussions of the Chemical Society, Vol. 65, The Chemical Society, London (1978).Google Scholar
  29. 28.
    P. R. Wills, Isothermal diffusion and quasielastic light-scattering of macromolecular solutes at finite concentration, J. Chem. Phys. 70, 5865–5874 (1979).CrossRefGoogle Scholar
  30. 29.
    G. D. J. Phillies, Effects of intermacromolecular interactions on diffusion, I, J. Chem. Phys. 60, 976–982 (1974).CrossRefGoogle Scholar
  31. 30.
    A. Einstein, Investigations on the Theory of the Brownian Movement, Dover, New York (1956).Google Scholar
  32. 31.
    R. Zwanzig, Langevin theory of polymer dynamics in dilute solutions. Adv. Chem. Phys. 15, 325–333 (1969).CrossRefGoogle Scholar
  33. 32.
    S. Harris, Perturbation solution of the one particle generalized Smoluchowski equation, J. Chem. Phys. 65, 5408–5412 (1976).CrossRefGoogle Scholar
  34. 33.
    S. Chandrasekhar, Stochastic processes in physics and astronomy, Rev. Mod. Phys. 15, 1–89 (1943); reprinted in reference 4.CrossRefGoogle Scholar
  35. 34.
    P. Mazur and I. Oppenheim, Molecular theory of Brownian motion, Physica 50, 241–258 (1970).CrossRefGoogle Scholar
  36. 35.
    J. Albers, J. M. Deutch, and I. Oppenheim, Generalized Langevin equations, J. Chem. Phys. 54, 3541–3546 (1971).CrossRefGoogle Scholar
  37. 36.
    J. M. Deutch and I. Oppenheim, Molecular theory of Brownian motion of several particles, J. Chem. Phys. 54, 3547–3555 (1971).CrossRefGoogle Scholar
  38. 37.
    T. J. Murphy and J. L. Aguirre, Brownian motion of interacting particles I, J. Chem. Phys. 57, 2098 (1972).CrossRefGoogle Scholar
  39. 38.
    G. Wilemski, On the derivation of Smoluchowski equations with corrections in the classical theory on Brownian motion, J. Stat. Phys. 14, 153–169 (1976).CrossRefGoogle Scholar
  40. 39.
    W. Hess and R. Klein, Dynamical properties of colloidal systems I, Physica 94A, 71–90 (1978).CrossRefGoogle Scholar
  41. 40.
    A. R. Altenberger, Molecular derivation of the generalized Kirkwood-Riseman equation for a dilute polymer solution, Acta Phys. Pol. A47, 861–865 (1974).Google Scholar
  42. 41.
    J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, 2nd Edition Noord-hoff, Leyden (1973).Google Scholar
  43. 42.
    R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255–284 (1966).CrossRefGoogle Scholar
  44. 43.
    R. Zwanzig, Hydrodynamic fluctuations and Stokes’ law friction, J. Res. N.B.S. 68B, 143–145 (1964).Google Scholar
  45. 44.
    C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgellschaft, Leipzig (1927).Google Scholar
  46. 45.
    B. U. Felderhof and J. M. Deutch, Frictional properties of dilute polymer solutions I, J. Chem. Phys. 62, 2391–2397 (1975).CrossRefGoogle Scholar
  47. 46.
    M. Stimson and G. B. Jeffrey, The motion of two spheres in a viscous fluid, Proc. R. Soc. London A111, 110–116 (1926).CrossRefGoogle Scholar
  48. 47.
    H. Brenner, Stokes resistance of an arbitrary particle II; An extension, Chem. Eng. Sci. 19, 599–629 (1964).CrossRefGoogle Scholar
  49. 48.
    J. L. Aguirre and T. J. Murphy, Brownian motion of N interacting particles II, J. Chem. Phys. 59, 1833–1840 (1973).CrossRefGoogle Scholar
  50. 49a.
    B. U. Felderhof, Force density induced on a sphere in linear hydrodynamics, I, Physica 84A, 557–568 (1976)CrossRefGoogle Scholar
  51. 49b.
    Force density induced on a sphere in linear hydrodynamics, II, ibid. 84A, 569–576 (1976)CrossRefGoogle Scholar
  52. 49c.
    R. Schmitz and B. U. Felderhof, Creeping flow about a sphere, ibid. 92A, 423–437 (1978).CrossRefGoogle Scholar
  53. 50a.
    R. B. Jones, Hydrodynamic interaction of two permeable spheres I, Physica 92A, 545–556 (1978)CrossRefGoogle Scholar
  54. 50b.
    Hydrodynamic interaction of two permeable spheres II, ibid. 92A, 557–570 (1978)CrossRefGoogle Scholar
  55. 50c.
    Hydrodynamic interactions of two permeable spheres III, ibid. 92A, 571–583 (1978).CrossRefGoogle Scholar
  56. 51.
    B. U. Felderhof and R. B. Jones, Faxen theorems for spherically symmetric polymers in solution, Physica 93A, 457–464 (1978).CrossRefGoogle Scholar
  57. 52.
    P. Reuland, B. U. Felderhof, and R. B. Jones, Hydrodynamic interaction of two spherically symmetric polymers, Physica 93A, 465–475 (1978).CrossRefGoogle Scholar
  58. 53.
    R. C. Ball and P. Richmond, Dynamics of colloidal dispersions, Phys. Chem. Liq. 9, 99–116 (1980).CrossRefGoogle Scholar
  59. 54.
    P. N. Pusey, Dynamics of interacting Brownian particles, J. Phys. A: Math. Gen. 8, 1433–1439 (1975).CrossRefGoogle Scholar
  60. 55a.
    D. L. Ermak, A computer simulation of charged particles in solution, I: Technique and equilibrium properties, J. Chem. Phys. 62, 4189–4196 (1975)CrossRefGoogle Scholar
  61. 55b.
    D. L. Ermak, A computer simulation of charged particles in solution II: Polyion diffusion coefficient, J. Chem. Phys. 62, 4197–4203 (1975).CrossRefGoogle Scholar
  62. 56.
    S. A. Allison, E. L. Chang, and J. M. Schurr, The effects of direct and hydrodynamic forces on macromolecular diffusion, Chem. Phys. 38, 29–41 (1979).CrossRefGoogle Scholar
  63. 57.
    R. J. A. Tough, unpublished calculations.Google Scholar
  64. 58.
    P. G. deGennes, Liquid dynamics and inelastic scattering of neutrons, Physica 25, 825–839 (1959).CrossRefGoogle Scholar
  65. 59.
    B. J. Ackerson, private communication.Google Scholar
  66. 60.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, W. A. Benjamin, Reading, Massachusetts (1975).Google Scholar
  67. 61.
    H. Mori, Transport, collective motion and Brownian motion, Prog. Theor. Phys. 33, 423–455 (1965).CrossRefGoogle Scholar
  68. 62.
    B. J. Berne, J. P. Boon, and S. A. Rice, On the calculation of autocorrelation functions of dynamical variables, J. Chem. Phys. 45, 1086–1096 (1966).CrossRefGoogle Scholar
  69. 63.
    M. Bixon, Dynamics of polymer molecules in dilute solution, J. Chem. Phys. 58, 1459–1466 (1973).CrossRefGoogle Scholar
  70. 64.
    R. Zwanzig, Theoretical basis for the Rouse-Zimm model in polymer solution dynamics, J. Chem. Phys. 60, 2717–2720 (1974).CrossRefGoogle Scholar
  71. 65.
    P. G. Wolynes and J. M. Deutch, Dynamical orientation correlations in solution, J. Chem. Phys. 67, 733–741 (1977).CrossRefGoogle Scholar
  72. 66.
    W. Dieterich and I. Peschel, Memory function approach to the dynamics of interacting Brownian particles, Physica 95A, 208–224 (1979).CrossRefGoogle Scholar
  73. 67.
    W. Hess and R. Klein, Dynamical properties of colloidal systems II, Physica 99A, 463–493 (1979).CrossRefGoogle Scholar
  74. 68.
    D. Levesque and L. Verlet, Computer “experiments” on classical fluids III, Phys. Rev. A2, 2514–2528 (1970).CrossRefGoogle Scholar
  75. 69.
    F. Lantelme, P. Turq, and P. Schofield, On the use of memory functions in the study of the dynamical properties of ionic liquids, J. Chem. Phys. 71, 2507–2513 (1979).CrossRefGoogle Scholar
  76. 70.
    W. Hess and R. Klein, Long-time versus short-time behavior of a system of interacting Brownian particles, J. Phys. A: Math. Gen. 13, L5–L10 (1980).CrossRefGoogle Scholar
  77. 71.
    T. Keyes in Statistical Mechanics: Time-Dependent Processes, (B. J. Berne, ed.), Plenum, New York (1977), pp. 259–309.Google Scholar
  78. 72.
    J. Bosse, W. Götze, and M. Lücke, Mode-coupling theory of simple classical liquids, Phys. Rev. A17, 434–454 (1978).CrossRefGoogle Scholar
  79. 73.
    A. R. Altenberger and J. M. Deutch, Light scattering from dilute macromolecular solutions, J. Chem. Phys. 59, 894–898 (1973).CrossRefGoogle Scholar
  80. 74.
    S. Harris, Diffusion effects in solutions of Brownian particles, J. Phys. A: Math. Gen. 11, 1895–1898 (1976).CrossRefGoogle Scholar
  81. 75.
    W. Hess and R. Klein, Theory of light scattering from a system of interacting Brownian particles, Physica 85A, 509–527 (1976).CrossRefGoogle Scholar
  82. 76.
    J. L. Anderson and C. C. Reed, Diffusion of spherical macromolecules at finite concentration, J. Chem. Phys. 64, 3240–3250 (1976).CrossRefGoogle Scholar
  83. 77.
    P. N. Pusey, in Photon Correlation and Light Beating Spectroscopy, ( H. Z. Cummins and E. R. Pike, eds.) Plenum, New York (1974), pp. 387–429.Google Scholar
  84. 78.
    R. B. Jones, Diffusion of tagged interacting spherical polymers, Physica 97A, 113–126 (1979).CrossRefGoogle Scholar
  85. 79.
    J. M. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes IV: The Equations of hydrodynamics, J. Chem. Phys. 18, 817–829 (1950).CrossRefGoogle Scholar
  86. 80.
    A. R. Altenberger, Generalized diffusion processes and light scattering from a moderately concentrated solution of spherical particles, Chem. Phys. 15, 269–277 (1976).CrossRefGoogle Scholar
  87. 81.
    A. R. Altenberger, On the wave vector dependent mutual diffusion of interacting Brownian particles, J. Chem. Phys. 70, 1994–2002 (1979).CrossRefGoogle Scholar
  88. 82.
    P. N. Pusey, D. W. Schaefer, D. E. Koppel, R. D. Camerini-Otero, and R. M. Franklin, A study of the diffusion properties of R17 virus by time-dependent light scattering, J. Phys. (Paris) 33, Cl–163–168 (1972).Google Scholar
  89. 83.
    D. W. Schaefer and B. J. Berne, Dynamics of charged macromolecules in solution, Phys. Rev. Lett. 32, 1110–1113 (1974).CrossRefGoogle Scholar
  90. 84.
    J. C. Brown, P. N. Pusey, J. W. Goodwin, and R. H. Ottewill, Light scattering study of dynamic and time-averaged correlations in dispersions of charged particles, J. Phys. A: Math. Gen. 8, 664–682 (1975).CrossRefGoogle Scholar
  91. 85.
    D. W. Schaefer and B. J. Ackerson, Melting of colloidal crystals, Phys. Rev. Lett. 35, 1448–1451 (1975).CrossRefGoogle Scholar
  92. 86.
    P. S. Dalberg, A. Boe, K. A. Strand, and T. Sikkeland, Quasielastic light scattering study of charged polystyrene particles in water, J. Chem. Phys. 69, 5473–5478 (1978).CrossRefGoogle Scholar
  93. 87.
    F. Grüner and W. Lehmann, The k dependence of the long-time diffusion in systems of interacting Brownian particles, J. Phys. A: Math. Gen. 12, L303–L307 (1979).CrossRefGoogle Scholar
  94. 88.
    F. Grüner and W. Lehmann, On the long time diffusion of interacting Brownian particles, in Light Scattering in Fluids and Macromolecular Solutions, ( V. Degiorgio, M. Corti, and M. Giglio, eds, Plenum, New York (1980).Google Scholar
  95. 89.
    N. A. Clark, A. J. Hurd, and B. J. Ackerson, Single colloidal crystals, Nature 281, 57–60 (1979).CrossRefGoogle Scholar
  96. 90.
    D. W. Schaefer, Colloidal suspensions as soft core liquids, J. Chem. Phys. 66, 3980–3984 (1977).CrossRefGoogle Scholar
  97. 91.
    K. Gaylor, W. van Megen, and I. Snook, Structure of dispersions of small, strongly interacting particles, J. Chem. Soc. Farad. Trans. II 75, 451–455 (1979), and references therein.CrossRefGoogle Scholar
  98. 92.
    F. Grüner and W. Lehmann, Multiple scattering of light in a system of interacting Brownian particles, J. Phys. A: Math. Gen. 13, 2155–2170 (1980).CrossRefGoogle Scholar
  99. 93.
    M. C. Wang and G. E. Uhlenbeck, On the theory of Brownian motion II, Rev. Mod. Phys. 17, 323–342 (1945), reprinted in reference 4.CrossRefGoogle Scholar
  100. 94.
    D. L. Ermak, Polyion-polyion interaction effects in a model polyelectrolyte solution, Automedica (GB) 3, 39–45 (1979).Google Scholar
  101. 95.
    K. J. Gaylor, I. K. Snook, W. van Megen, and R. O. Watts, Brownian dynamics studies of dilute dispersions, Chem. Phys. 43, 233–239 (1979).CrossRefGoogle Scholar
  102. 96.
    K. J. Gaylor, I. K. Snook, and W. van Megen, Comparison of Brownian dynamics with photon correlation spectroscopy of strongly interacting colloidal particles, J. Chem. Phys. 75, 1682–1689 (1981).CrossRefGoogle Scholar
  103. 97.
    G. H. Vineyard, Scattering of slow neutrons by a liquid, Phys. Rev. 110, 999–1010 (1958).CrossRefGoogle Scholar
  104. 98.
    W. Hess and R. Klein, Dynamical properties of colloidal systems III: Collective and self diffusion of interacting charged particles, Physica 105A, 552–576 (1981).CrossRefGoogle Scholar
  105. 99.
    P. Doty and R. F. Steiner, Macro-ions I: Light scattering theory and experiments with bovine serum albumin, J. Chem. Phys. 20, 85–94 (1952).CrossRefGoogle Scholar
  106. 100.
    T. Raj and W. H. Flygare, Diffusion studies on bovine serum albumin by quasielastic light scattering, Biochemistry, 13, 3336–3340 (1974).CrossRefGoogle Scholar
  107. 101.
    R. Finsy, A. Devriese, and H. Lekkerkerker, Light scattering study of the diffusion of interacting particles, J. Chem. Soc. Farad. Trans. II 76, 767–775 (1980).CrossRefGoogle Scholar
  108. 102.
    P. Doherty and G. B. Benedek, The effect of electric charge on the diffusion of macro-molecules, J. Chem. Phys. 61, 5426–5434 (1974).CrossRefGoogle Scholar
  109. 103.
    J. D. Harvey, R. Geddes, and P. R. Wills, Conformational studies of BSA using laser light scattering, Biopolymers 18, 2249–2260 (1979).CrossRefGoogle Scholar
  110. 104.
    J. Newman, H. L. Swinney, S. A. Berkowitz, and L. A. Day, Hydrodynamic properties and molecular weight of FD bacteriophage DNA, Biochemistry 13, 4832–4838 (1974).CrossRefGoogle Scholar
  111. 105a.
    M. M. Kops-Werkhoven and H. M. Fijnaut, Light scattering from sterically stabilized silica particles, in Light Scattering in Fluids and Macromolecular Solutions, (V. Degiorgio, M. Corti, and M. Giglio, eds.), Plenum, London (1980)Google Scholar
  112. 105b.
    Light scattering and sedimentation experiments on silica dispersions at finite concentrations, J. Chem. Phys. 74, 1618–1625 (1981).CrossRefGoogle Scholar
  113. 106.
    G. D. J. Phillies, G. B. Benedek, and N. A. Mazer, Diffusion in protein solutions at high concentrations: a study by quasielastic light scattering, J. Chem. Phys. 65, 1883–1892 (1976).CrossRefGoogle Scholar
  114. 107.
    B. D. Fair, D. Y. Chao, and A. M. Jamieson, Mutual translational diffusion coefficients in bovine serum albumin solutions measured by quasielastic laser light scattering, J. Colloid Interface Sci. 66, 323–330 (1978).CrossRefGoogle Scholar
  115. 108.
    M. B. Weissman, R. C. Pan, and B. R. Ware, Electrostatic contributions to the viscosities and diffusion coefficients of macroion solutions, J. Chem. Phys. 70, 2897–2903 (1979).CrossRefGoogle Scholar
  116. 109.
    M. B. Weissman and J. Marque, Small-ion friction, hydrodynamic interaction and charge fluctuation effects in solutions of a globular macroion, J. Chem. Phys. 73, 3999–4004 (1980).CrossRefGoogle Scholar
  117. 110.
    K. H. Keller, E. R. Canales and S. I. Yum, Tracer and mutual diffusion coefficients of proteins, J. Phys. Chem. 75, 379–387 (1971).CrossRefGoogle Scholar
  118. 111.
    S. S. Alpert and G. Banks, The concentration dependence of the hemoglobin mutual diffusion coefficient, Biophys. Chem. 4, 287–296 (1976).CrossRefGoogle Scholar
  119. 112.
    C. R. Jones, C. S. Johnson, and J. T. Penniston, Photon correlation spectroscopy of hemoglobin: diffusion of oxy-HbA and oxy-HbS, Biopolymers 17, 1581–1593 (1978).CrossRefGoogle Scholar
  120. 113.
    J. L. Anderson, F. Rauh, and A. Morales, Particle diffusion as a function of concentration and ionic strength, J. Phys. Chem. 82, 608–616 (1978).CrossRefGoogle Scholar
  121. 114.
    W. B. Veldkamp and J. R. Votano, Effects of intermolecular interaction on protein diffusion in solution, J. Phys. Chem. 80, 2794–2801 (1976).CrossRefGoogle Scholar
  122. 115.
    M. Corti and V. Degiorgio, Quasielastic light scattering study of intermicellar interactions, in Light Scattering in Liquids and Macromolecular Solutions, ( V. Degiorgio, M. Corti, and M. Giglio, eds.), Plenum, New York (1980).Google Scholar
  123. 116.
    D. O. Shah and R. S. Schecter, Improved Oil Recovery by Surfactant and Polymer Flooding, Academic, New York (1977).Google Scholar
  124. 117.
    A. M. Bellocq, J. Biais, B. Clin, P. Lalanne, and B. Lemanceau, Study of dynamical and structural properties of microemulsions by chemical physics methods, J. Colloid Interface Sci. 70, 524–536 (1979).CrossRefGoogle Scholar
  125. 118.
    A Graciaa, J. Lachaise, P. Chabrat, L. Letamendia, J. Rouch, C. Vaucamps, M. Bourrel, and C. Chambu, Light beating spectroscopy measurements of microemulsion diffusion coefficient, J. Phys. (Paris) Lett. 38, 253–257 (1977).Google Scholar
  126. 119.
    A. Graciaa, J. Lachaise, P. Chabrat, L. Letamendia, J. Rouch, and C. Vaucamps, Light beating spectroscopy measurements of micelles mutual diffusion coefficient within oil in water microemulsions in the presence of sodium chloride, J. Phys. (Paris) Lett. 39, 235–238 (1978).CrossRefGoogle Scholar
  127. 120.
    R. A. Day, B. H. Robinson, J. H. R. Clarke, and J. V. Doherty, Characterization of water-containing reversed micelles by viscosity and dynamic light scattering methods, J. Chem. Soc. Faraday Trans. II 75, 132–139 (1979).Google Scholar
  128. 121.
    M. Zulauf and H. Eicke, Inverted micelles and microemulsions in the ternary system H20/aerosol-OT/isooctane as studied by photon correlation spectroscopy, J. Phys. Chem. 83, 480–486 (1979).CrossRefGoogle Scholar
  129. 122.
    E. Sein, J. R. Lalanne, J. Buchert, and S. Kielich, Dynamic aspect of Rayleigh scattering and viscosity of ternary system aerosol-OT/water/carbon tetrachloride, J. Colloid Interface Sci. 72, 363–366 (1979).CrossRefGoogle Scholar
  130. 123.
    A. M. Cazabat, D. Langevin, and A. Pouchelon, Light-scattering study of water-in-oil microemulsions, J. Coll. Interface Sci. 73, 1–12 (1980).CrossRefGoogle Scholar
  131. 124.
    A. M. Cazabat and D. Langevin, Diffusion of interacting particles: light scattering study of microemulsions, J. Chem. Phys. 74, 3148–3158 (1981).CrossRefGoogle Scholar
  132. 125.
    A. M. Bellocq, G. Fourche, P. Chabrat, L. Letamendia, J. Rouch, and C. Vaucamps, Dynamic light scattering study of concentrated W/O microemulsions, Opt. Acta 27, 1629–1639 (1980).CrossRefGoogle Scholar
  133. 126.
    D. J. Cebula, R. H. Ottewill, J. Ralston, and P. N. Pusey, Investigations of microemulsions by light scattering and neutron scattering, J. Chem. Soc. Faraday Trans. I, 77, 2585–2612 (1981).CrossRefGoogle Scholar
  134. 127.
    H. M. Fijnaut, C. Pathmamanoharan, E. A. Nieuwenhuis, and A. Vrij, Dynamic light scattering from concentrated colloidal dispersions, Chem. Phys. Lett. 59, 351–355 (1978).CrossRefGoogle Scholar
  135. 128.
    M. J. Stephen, Spectrum of light scattered from charged macromolecules in solution, J. Chem. Phys. 55, 3878–3883 (1971).CrossRefGoogle Scholar
  136. 129.
    L. Friedhoff and B. J. Berne, Irreversible thermodynamic analysis of electrophoretic light scattering experiments, Biopolymers 15, 21–28 (1976).CrossRefGoogle Scholar
  137. 130.
    J. M. Schurr, A theory of electrolyte friction on translating polyelectrolytes, Chem. Phys. 45, 119–132 (1980).CrossRefGoogle Scholar
  138. 131.
    M. B. Weissman, Hydrodynamic interaction effects on spherical macroion diffusion, J. Chem. Phys. 73, 3997–3998 (1980).CrossRefGoogle Scholar
  139. 132.
    Z. Alexandrowicz and E. Daniel, Sedimentation and diffusion of polyelectrolytes. Part 1: Theoretical description, Biopolymers 1, 447–471 (1963).CrossRefGoogle Scholar
  140. 133.
    G. D. J. Phillies, Contribution of slow charge fluctuations to light scattering from a monodisperse solution of macromolecules, Macromolecules 9, 447–450 (1976).CrossRefGoogle Scholar
  141. 134.
    K. Freed, Polymer dynamics and the hydrodynamics of polymer solutions, in Progress in Liquid Physics, ( C. Croxton, ed.), Wiley, New York (1978), 343–390.Google Scholar
  142. 135.
    P. N. Pusey and R. J. A. Tough, Langevin approach to the dynamics of interacting Brownian particles, J. Phys. A: Math. Gen. 15, 1291–1308 (1982); Corrigendum 16, 2889 (1983).Google Scholar
  143. 136.
    P. N. Pusey and R. J. A. Tough, Hydrodynamic interactions and diffusion in concentrated particle suspensions, Faraday Discuss. Chem. Soc. 76, 123–136 (1983).CrossRefGoogle Scholar
  144. 137.
    R. J. A. Tough and P. N. Pusey, Short-time dynamics of hydrodynamically-interacting Brownian particles, to be published.Google Scholar
  145. 138.
    J. L. Arauz-Lara and M. Medina-Noyola, Sum rules for Sxß(k, w) for two diffusing species, Physica 122A, 547–562 (1983).CrossRefGoogle Scholar
  146. 139.
    D. L. Ermak and J. A. McCammon, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys. 69, 1352–1360 (1978).CrossRefGoogle Scholar
  147. 140.
    P. Mazur, On the motion and Brownian motion of n spheres in a viscous fluid, Physica 110A, 128–146 (1982).CrossRefGoogle Scholar
  148. 141.
    W. B. Russel and A. B. Glendinning, The effective diffusion coefficient detected by dynamic light scattering, J. Chem. Phys. 74, 948–952 (1981).CrossRefGoogle Scholar
  149. 142.
    H. M. Fijnaut, Wave vector dependence of the effective diffusion coefficient of Brownian particles, J. Chem. Phys. 74, 6857–6863 (1981).CrossRefGoogle Scholar
  150. 143.
    G. D. J. Phillies and P. R. Wills, Light scattering spectrum of a suspension of interacting Brownian macromolecules, J. Chem. Phys. 75, 508–514 (1981).CrossRefGoogle Scholar
  151. 144.
    P. R. Wills, Wave vector dependence of the effective diffusion coefficient for solutions of macromolecules, J. Phys. A: Math. Gen. 14, 3093–3099 (1981).CrossRefGoogle Scholar
  152. 145.
    For a comprehensive review see W. Hess and R. Klein, Generalized hydrodynamics of systems of Brownian particles, Adv. Phys. 32, 173–283 (1983).CrossRefGoogle Scholar
  153. 146.
    P. N. Pusey and R. J. A. Tough, Dynamic light scattering: a probe of Brownian particle dynamics, Adv. Colloid Interface Sci. 16, 143–159 (1982).CrossRefGoogle Scholar
  154. 147.
    J. A. Marqusee and J. M. Deutch, Concentration dependence of the self-diffusion coefficient, J. Chem. Phys. 73, 5396–5397 (1980).CrossRefGoogle Scholar
  155. 148.
    G. K. Batchelor, Sedimentation in a dilute polydisperse system of interacting spheres. Part 1: General formulae, J. Fluid Mech. 119, 379–408 (1982); Diffusion in a dilute polydisperse system of interacting spheres, J. Fluid Mech. 131, 155–175 (1983).CrossRefGoogle Scholar
  156. 149.
    S. Hanna, W. Hess, and R. Klein, Self-diffusion of spherical Brownian particles with hard-core interaction, Physica 111A, 181–199 (1982).CrossRefGoogle Scholar
  157. 150.
    S. Hanna, W. Hess, and R. Klein, The velocity autocorrelation function of an over-damped Brownian system with hard-core interaction, J. Phys. A: Math. Gen. 12, L493–498 (1981).CrossRefGoogle Scholar
  158. 151.
    R. B. Jones and G. S. Burfield, Memory effects in the diffusion of an interacting polydisperse suspension I: Projection formalism at long wavelength; II: Hard spheres at low density, Physica 111A, 562–576 and 577–590 (1982).Google Scholar
  159. 152.
    B. J. Ackerson and L. Fleishman, Correlations for dilute hard core suspensions, J. Chem. Phys. 76, 2675–2679 (1982).CrossRefGoogle Scholar
  160. 153.
    R. J. A. Tough, Self-diffusion in a suspension of interacting Brownian particles, Mol. Phys. 46, 465–474 (1982).CrossRefGoogle Scholar
  161. 154.
    H. N. W. Lekkerkerker and J. K. G. Dhont, On the calculation of the self-diffusion coefficient of interacting Brownian particles, J. Chem. Phys. 80, 5790–5792 (1984).CrossRefGoogle Scholar
  162. 155.
    P. Mazur and W. van Saarloos, Many-sphere hydrodynamic interactions and mobilities in a suspension, Physica 115A, 21–57 (1982).CrossRefGoogle Scholar
  163. 156.
    M. Muthukumar and K. Freed, Cluster expansion for concentration dependence of self-friction coefficients for suspensions of interacting spheres; Cluster expansion for concentration dependence of cooperative friction coefficients for suspensions of interacting spheres, J. Chem. Phys. 78, 497–510 and 511–519 (1983).Google Scholar
  164. 157a.
    C. W. J. Beenakker and P. Mazur, Self-diffusion of spheres in a concentrated suspension, Physica 120A, 388–410 (1983)CrossRefGoogle Scholar
  165. 157b.
    Diffusion of spheres in a concentrated suspension: resummation of many-body hydrodynamic interactions, Phys. Lett. 98A, 22–24 (1983)Google Scholar
  166. 157c.
    Diffusion of spheres in a concentrated suspension II, in press.Google Scholar
  167. 158.
    W. van Megen, R. H. Ottewill, S. M. Owens, and P. N. Pusey, Measurement of the wave-vector dependent diffusion coefficient in concentrated particle dispersions, J. Chem. Phys., in press.Google Scholar
  168. 159.
    P. N. Pusey and W. van Megen, Measurement of the short-time self-mobility of particles in concentrated suspension. Evidence for many-particle hydrodynamic interactions, J. Phys. (Paris) 44, 285–291 (1983).CrossRefGoogle Scholar
  169. 160.
    A. B. Glendinning and W. B. Russel, A pairwise additive description of sedimentation and diffusion in concentrated suspensions of hard spheres, J. Colloid Interface Sci. 89, 124–143 (1982).CrossRefGoogle Scholar
  170. 161.
    W. van Megen, I. Snook, and P. N. Pusey, Diffusion in concentrated hard sphere dispersions: effects of two and three particle mobilities, J. Chem. Phys. 78, 931–936 (1983).CrossRefGoogle Scholar
  171. 162.
    M. M. Kops-Werkhoven, H. J. Mos, P. N. Pusey, and H. M. Fijnaut, Dynamic light scattering and optical contrast in concentrated silica dispersions, Chem. Phys. Lett. 81, 365–370 (1981).CrossRefGoogle Scholar
  172. 163.
    M. M. Kops-Werkhoven and H. M. Fijnaut, Dynamic behavior of silica dispersions studied near the optical matching point, J. Chem. Phys. 77, 2242–2253 (1982).CrossRefGoogle Scholar
  173. 164.
    M. M. Kops-Werkhoven, C. Pathmamanoharan, A. Vrij, and H. M. Fijnaut, Concentration dependence of the self diffusion coefficient of hard spherical particles measured with photon correlation spectroscopy, J. Chem. Phys. 77, 5913–5922 (1982).CrossRefGoogle Scholar
  174. 165.
    W. Härtl and H. Versmold, An experimental verification of incoherent light scattering, J. Chem. Phys. 80, 1387–1389 (1984).CrossRefGoogle Scholar
  175. 166.
    P. N. Pusey, H. M. Fijnaut, and A. Vrij, Mode amplitudes in dynamic light scattering by concentrated liquid suspensions of polydisperse hard spheres, J. Chem. Phys. 77, 4270–4281 (1982).CrossRefGoogle Scholar
  176. 167.
    J. P. Boon and S. Yip, Molecular Hydrodynamics, McGraw-Hill, New York (1980); A. Rahman, K. S. Singwi, and A. Sjölander, Theory of slow neutron scattering by liquids. I, Phys. Rev. 126, 986–996 (1962).CrossRefGoogle Scholar
  177. 168.
    Inelastic Scattering of Neutrons in Solids and Liquids, International Atomic Energy Agency, Vienna (1961).Google Scholar
  178. 169.
    J. M. Schurr, The thermodynamic driving force in mutual diffusion of hard spheres, Chem. Phys. 65, 217–223 (1982).CrossRefGoogle Scholar
  179. 170.
    M. M. Kops-Werkhoven, A. Vrij, and H. N. W. Lekkerkerker, On the relation between diffusion, sedimentation and friction, J. Chem. Phys. 78, 2760–2763 (1983).CrossRefGoogle Scholar
  180. 170.
    M. M. Kops-Werkhoven, A. Vrij, and H. N. W. Lekkerkerker, On the relation between diffusion, sedimentation and friction, J. Chem. Phys. 78, 2760–2763 (1983).CrossRefGoogle Scholar
  181. 172.
    A. R. Altenberger, On the Rayleigh light scattering from dilute solutions of charged spherical macromolecules, Opt. Acta 27, 345–352 (1980).CrossRefGoogle Scholar
  182. 173.
    R. S. Hall and C. S. Johnson, Experimental evidence that mutual and tracer diffusion coefficients for hemoglobin are not equal, J. Chem. Phys. 72, 4251–4253 (1980).CrossRefGoogle Scholar
  183. 174.
    R. S. Hall, Y. S. Oh, and C. S. Johnson, Photon correlation spectroscopy in strongly absorbing and concentrated samples with applications to unliganded hemoglobin, J. Phys. Chem. 84, 756–767 (1980).CrossRefGoogle Scholar
  184. 175.
    Y. S. Oh and C. S. Johnson, The wave vector dependence of diffusion coefficients in photon correlation spectroscopy of protein solutions, J. Chem. Phys. 74, 2717–2720 (1981).CrossRefGoogle Scholar
  185. 176a.
    D. R. Bauer, J. Phys. Chem. 84, 1592–1598 (1980)CrossRefGoogle Scholar
  186. 176b.
    also in Polymer Colloids II, (R. M. Fitch, ed.), Plenum, New York (1980).Google Scholar
  187. 177.
    R. Giordano, A. Salleo, S. Salleo, F. Mallamace, and F. Wanderlingh, Diffusion coefficient of lysozyme in water, Opt. Acta 27, 1465–1472 (1980).CrossRefGoogle Scholar
  188. 178.
    C. M. Trotter and D. N. Pinder, Laser light scattering from concentrated solutions of polystyrene latex spheres: a comparative study. J. Chem. Phys. 75, 118–127 (1981).CrossRefGoogle Scholar
  189. 179.
    A. M. Cazabat, D. Chatenay, D. Lahgevin, and A. Pouchelon, Light scattering study of microemulsions and its relation to percolation phenomena, J. Phys. Lett. (Paris) 41, L441 – L445 (1980).Google Scholar
  190. 180.
    C. Van den Broeck, F. Lostak and H. N. W. Lekkerkerker, The effect of direct interactions on Brownian diffusion, J. Chem. Phys. 74, 2006–2010 (1981).CrossRefGoogle Scholar
  191. 181.
    G. D. J. Phillies, Experimental demonstration of multiple scattering suppression in quasielastic-light-scattering spectroscopy by homodyne coincidence techniques, Phys. Rev. A24, 1939–1943 (1981).CrossRefGoogle Scholar
  192. 182.
    G. D. J. Phillies, Non-hydrodynamic contribution to the concentration dependence of the self-diffusion of interacting Brownian particles, Chem. Phys. 74, 197–203 (1981).CrossRefGoogle Scholar
  193. 183.
    T. Tsang and H. T. Tang, Light scattering and dynamics of interacting Brownian particles, J. Chem. Phys. 76, 3873–3876 (1982).CrossRefGoogle Scholar
  194. 184.
    J. M. Schurr, The fluctuating-force formalism of friction drag coefficients, Chem. Phys. 71, 101–104 (1982).CrossRefGoogle Scholar
  195. 185.
    T. Ohtsuki and K. Okano, Diffusion coefficients of interacting Brownian particles, J. Chem. Phys. 73, 1443–1450 (1982).CrossRefGoogle Scholar
  196. 186.
    T. Ohtsuki, Dynamical properties of strongly interacting Brownian particles, Physica 110A, 606–616 (1982).CrossRefGoogle Scholar
  197. 187.
    T. Ohtsuki, Generalized diffusion equation of interacting Brownian particles, Chem. Phys. Lett. 98, 121–124 (1983).CrossRefGoogle Scholar
  198. 188.
    T. Ohtsuki, Dynamical properties of strongly interacting Brownian particles. III: Binary mixtures, Physica 122A, 212–230 (1983).CrossRefGoogle Scholar
  199. 189.
    G. T. Evans and C. P. James. A calculation of the self-diffusion coefficient for a dilute solution of Brownian particles, J. Chem. Phys. 79, 5553–5557 (1983).CrossRefGoogle Scholar
  200. 190.
    B. U. Felderhof and R. B. Jones, Linear response theory of the sedimentation and diffusion in a suspension of spherical particles, Physica 119A, 591–608 (1983).CrossRefGoogle Scholar
  201. 191.
    B. U. Felderhof and R. B. Jones, Cluster expansion of the diffusion kernel of a suspension of interacting Brownian particles, Physica 121A, 239–244 (1983).Google Scholar
  202. 192.
    B. U. Felderhof and R. Jones, Diffusion in hard sphere suspensions, Physica 122A, 89–104 (1983).CrossRefGoogle Scholar
  203. 193.
    J. K. G. Dhont, Multiple Rayleigh-Gans-Debye scattering in colloidal systems—general theory and static light scattering, Physica 120A, 238–262 (1983).CrossRefGoogle Scholar
  204. 194.
    R. I. Cukier, Diffusion of interacting Brownian particles in a fluid with fixed macro-particles, J. Chem. Phys. 79, 3911–3920 (1983).CrossRefGoogle Scholar
  205. 195.
    N. Yoshida, Contribution of electrostatic interactions to the concentration dependence of the self-diffusion coefficient of Brownian particles, Chem. Phys. Lett. 102, 83–87 (1983).CrossRefGoogle Scholar
  206. 196.
    C. Andries, W. Guedens, and J. Clauwaert, Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations, Biophys. J. 43, 345–354 (1983).CrossRefGoogle Scholar
  207. 197.
    B. Nystrom and R. M. Johnsen, Effect of concentration and ionic strength of lysozyme, Chem. Scr. 22, 82–84 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. N. Pusey
    • 1
  • R. J. A. Tough
    • 1
  1. 1.Royal Signals and Radar EstablishmentMalvern, WorcestershireEngland

Personalised recommendations