Medical Applications of Elemental Analysis Using Fluorescence Techniques

  • Paul A. Feller
  • James G. Kereiakes
  • Stephen R. Thomas


Elemental analysis using X-ray fluorescence had its beginnings in the early 1900s with the discovery of characteristic X-ray line spectra. One of the earliest uses of the technique was to determine the elemental composition of mineral samples. During the last 15 years, much progress has been made in X-ray detection and analysis systems, so that fluorescence analysis techniques are being used in many different fields. Modern applications include analyzing environmental pollutants near urban and industrial areas, analyzing commercial products for impurities, determining the constituents of geological and archaeological samples, as well as applications in the field of criminology. In recent years, fluorescence analysis has received much attention from the medical community because of its usefulness in determining concentrations of naturally occurring trace elements and changes in these concentrations due to pathological conditions, and in detecting elements deliberately introduced into the body as tracers.


Medical Application Minimum Detectable Concentration Photon Excitation Secondary Fluorescer Hydrocarbon Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Valkovic, Analysis of Biological Material for Trace Elements Using X-Ray Spectroscopy, CRC, Boca Raton, Florida (1980).Google Scholar
  2. 2.
    E. J. Underwood, Trace Elements in Human and Animal Nutrition, Academic, New York (1971).Google Scholar
  3. 3.
    W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, ed., Trace Element Metabolism in Animals V. 2, University Park, Baltimore (1974).Google Scholar
  4. 4.
    I. L. Mulay, R. Roy, B. E. Knox, N. H. Suhr, and W. E. Delaney, Trace-metal analysis of cancerous and noncancerous human tissues, J. Nat. Cancer Inst. 47, 1–13 (1971).Google Scholar
  5. 5.
    M. H. Seltzer, F. E. Rosato, and M. J. Fletcher, Serum and tissue magnesium levels in human breast carcinoma, J. Surg. Res. 10, 159–162 (1970).CrossRefGoogle Scholar
  6. 6.
    A. Danielsen and E. Steinnes, A study of some selected trace elements in normal and cancerous tissue by neutron activation analysis, J. Nucl. Med. 11, 260–264 (1970).Google Scholar
  7. 7.
    J. M. Janes, J. T. McCall, and L. R. Elveback, Trace metals in human osteogenic sarcoma, Mayo Clin. Proc. 47, 476–478 (1972).Google Scholar
  8. 8.
    J. Sherman, The theoretical derivation of fluorescent X-ray intensities from mixtures, Spectrochim. Acta 1, 283–306 (1955).Google Scholar
  9. 9.
    J. Sherman, Simplification of a formula in the correlation of fluorescent X-ray intensities from mixtures, Spectrochim. Acta 15, 466–470 (1959).CrossRefGoogle Scholar
  10. 10.
    H. J. Lucas-Tooth and B. J. Price, A mathematical method for the investigation of interelement effects in X-ray fluorescent analysis, Metallurgica 64, 149–152 (1961).Google Scholar
  11. 11.
    H. J. Lucas-Tooth and C. Pyne, The accurate determination of major constituents by X-ray fluorescent analysis in the presence of large interelement effects, in Advances in X-Ray Analysis vol. 7 (W. M. Mueller, G. Mallet, and M. Fay, eds.), pp. 523–541, Plenum, New York (1964).Google Scholar
  12. 12.
    J. W. Criss and L. S. Birks, Calculation methods for fluorescent X-ray spectrometry, Anal. Chem. 40, 1080–1086 (1968).CrossRefGoogle Scholar
  13. 13.
    A. Stephenson, Theoretical analysis of quantitative X-ray emission data: glasses, rocks, and metals, Anal. Chem. 43, 1761–1764 (1971).CrossRefGoogle Scholar
  14. 14.
    C. J. Sparks, Jr., Quantitative X-ray fluorescent analysis using fundamental parameters, in Advances in X-Ray Analysis vol. 19 ( R. W. Gould, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 19–52, Kendall/Hunt, Dubuque, Iowa (1976).Google Scholar
  15. 15.
    R. P. Gardner and A. R. Hawthorne, Monte Carlo simulation of the X-ray fluorescence excited by discrete energy photons in homogeneous samples including tertiary interelement effects, X-Ray Spectrom. 4, 138–148 (1975).CrossRefGoogle Scholar
  16. 16.
    A. R. Hawthorne and R. P. Gardner, Monte Carlo simulation of X-ray fluorescence from homogeneous multielement samples excited by continuous and discrete energy photons from X-ray tubes, Anal. Chem. 47, 2220–2225 (1975).CrossRefGoogle Scholar
  17. 17.
    R. P. Gardner, L. Wielopolski, and J. M. Doster, Adaption of the fundamental parameters of Monte Carlo simulation to EDXRF analysis with secondary fluorescer X-ray machines, in Advances in X-Ray Analysis vol. 21 (C. S. Barrett, D. E. Leyden, J. B. Newkirk, and C. O. Ruud, eds.), pp. 129–142, Plenum, New York (1978).Google Scholar
  18. 18.
    R. Woldseth, X-Ray Energy Spectroscopy, Kevex Corp., Burlingame, California (1973).Google Scholar
  19. 19.
    D. C. Camp, Physical principles, in Medical Applications of Fluorescent Excitation Analysis ( L. Kaufman and D. C. Price, eds.), pp. 3–27, CRC Press, Boca Raton, Florida (1979).Google Scholar
  20. 20.
    J. M. Jaklevic and F. S. Goulding, Instrumentation for energy dispersive X-ray fluorescence, in Medical Applications of Fluorescent Excitation Analysis (L. Kaufman and D. C. Price, eds.), pp. 29–47, CRC, Boca Raton, Florida (1979).Google Scholar
  21. 21.
    Technical Data—Silicon (Li) X-Ray Detectors, E. G. and G. Ortec, Oak Ridge, Tennessee (December, 1977 ).Google Scholar
  22. 22.
    P. B. Hoffer, R. N. Beck, and A. Gottschalk, eds., The Role of Semiconductor Detectors in the Future of Nuclear Medicine, Society of Nuclear Medicine, New York (1971).Google Scholar
  23. 23.
    J. M. Jaklevic, Excitation methods for energy-dispersive analysis, in Medical Applications of Fluorescent Excitation Analysis (L. Kaufman and D. C. Price, eds.), pp. 49-67, CRC, Boca Raton, Florida (1979).Google Scholar
  24. 24.
    L. T. Dillman and F. C. von der Lage, Radionuclide Decay Schemes and Nuclear Parameters for Use in Radiation-Dose Estimation, NM/MIRD Pamphlet no. 10, Society of Nuclear Medicine, New York (1975).Google Scholar
  25. 25.
    Radiation Sources, New England Nuclear Catalog 7M678A-1270, Boston, p. 5 (June, 1978).Google Scholar
  26. 26.
    T. J. Kneip and G. R. Laurer, Isotope excited X-ray fluorescence, Anal. Chem. 44, 57A–68A (1972).CrossRefGoogle Scholar
  27. 27.
    E. Vano and L. González, Importance of geometry in biological sample analysis by X-ray fluorescence, Med. Phys. 5, 400–403 (1978).CrossRefGoogle Scholar
  28. 28.
    P. A. Feller, Determination of the suitability of photon-induced X-ray fluorescence analysis for the quantitation of selected low-atomic-number trace elements in biological materials, Ph.D. Dissertation, University of Cincinnati, Cincinnati, Ohio (1980).Google Scholar
  29. 29.
    D. A. Gedcke, E. Elad, and P. B. Denee, An intercomparison of trace element excitation methods for energy-dispersive fluorescence analyzers, X-Ray Spectrom. 6, 21–29 (1977).CrossRefGoogle Scholar
  30. 30.
    P. S. Ong, P. K. Lund, C. E. Litton, and B. A. Mitchell, An energy dispersive system for the analysis of trace elements in human blood serum, in Advances in X-Ray Analysis vol. 16 (L. S. Birks, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 124–133, Plenum, New York (1973).Google Scholar
  31. 31.
    P. S. Ong, Trace elements in medicine, in Medical Applications of Fluorescent Excitation Analysis (L. Kaufman and D. C. Price, eds.), pp. 71-88, CRC, Boca Raton, Florida (1979).Google Scholar
  32. 32.
    P. S. Ong and H. L. Cox, Jr., Line-focusing X-ray monochromator for the analysis of trace elements in biological specimens, Med. Phys. 3, 74–79 (1976).CrossRefGoogle Scholar
  33. 33.
    T. G. Dzubay, B. V. Jarrett, and J. M. Jaklevic, Background reduction in X-ray fluorescence spectra using polarization, Nucl. Instr. Meth. 115, 297–299 (1974).CrossRefGoogle Scholar
  34. 34.
    L. Kaufman and D. C. Camp, Polarized radiation for X-ray fluorescence analysis, in Advances in X-Ray Analysis vol. 18 (W. L. Pickles, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 247–258, Plenum, New York (1975).Google Scholar
  35. 35.
    R. H. Howell, W. L. Pickles, and J. L. Cate, X-ray fluorescence experiments with polarized X rays, in Advances in X-Ray Analysis vol. 18 (W. L. Pickles, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 265–277, Plenum, New York (1975).Google Scholar
  36. 36.
    L. Kaufman, D. Shosa, and D. C. Camp, A high intensity source of polarized X rays for fluorescent excitation analysis, IEEE Trans. Nucl. Sci. NS-24, 525–531 (1977).CrossRefGoogle Scholar
  37. 37.
    R. W. Ryon, Polarized radiation produced by scatter for energy dispersive X-ray fluorescence trace analysis, in Advances in X-Ray Analysis vol. 20 (H. F. McMurdie, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 575–590, Plenum, New York (1977).Google Scholar
  38. 38.
    P. Standzenieks and E. Selin, Background reduction of X-ray fluorescence spectra in a secondary target energy dispersive spectrometer, Nucl. Instr. Meth. 165, 63–65 (1979).CrossRefGoogle Scholar
  39. 39.
    J. F. Tinney, In vivo X-ray fluorescence analysis—concepts and equipment, in Semiconductor Detectors in the Future of Nuclear Medicine (P. B. Hofler, R. N. Beck, and A. Gottschalk, eds.), pp. 214–229, Society of Nuclear Medicine, New York (1971).Google Scholar
  40. 40.
    L. Patomaki and H. Olkkonen, Determination of mineral density and structural inhomogen-eity of trabecular bone in vitro by X-ray fluorescence line scanning, Int. J. Appl. Rad. I sot. 25, 401–406 (1974).CrossRefGoogle Scholar
  41. 41.
    R. Cesareo and D. Del Principe, Analysis of iron in blood using radioisotopic-excited X-ray fluorescence, Med. Phys. 1, 163–164 (1974).CrossRefGoogle Scholar
  42. 42.
    L. Ahlgren and S. Mattsson, An X-ray fluorescence technique for in vivo determination of lead concentration in a bone matrix, Phys. Med. Biol. 24, 136–145 (1979).CrossRefGoogle Scholar
  43. 43.
    L. Ahlgren and S. Mattsson, Cadmium in man measured in vivo by X-ray fluorescence analysis, Phys. Med. Biol. 26, 19–26 (1981).CrossRefGoogle Scholar
  44. 44.
    L. Kaufman and C. J. Wilson, Determination of extracellular fluid volume by fluorescence excitation analysis of bromine, J. Nucl. Med. 14, 812–815 (1973).Google Scholar
  45. 45.
    D. C. Price, L. Kaufman, and R. N. Pierson, Jr., Determination of the bromide space in man by fluorescent excitation analysis of oral bromine, J. Nucl. Med. 16, 814–818 (1975).Google Scholar
  46. 46.
    L. Kaufman, F. Deconinck, D. C. Price, P. Guesry, C. J. Wilson, B. Hruska, S. J. Swann, D. C. Camp, A. L. Voegele, R. D. Friesen, and J. A. Nelson, An automated fluorescent excitation analysis system for medical applications, Invest. Radiol. 11, 210–215 (1976).CrossRefGoogle Scholar
  47. 47.
    D. C. Price, S. J. Swann, S. T. C. Hung, L. Kaufman, J. P. Huberty, and S. B. Shohet, The measurement of circulating red cell volume using nonradioactive cesium and fluorescent excitation analysis, J. Lab. Clin. Med. 87, 535–543 (1976).Google Scholar
  48. 48.
    A. A. Moss, L. Kaufman, and J. A. Nelson, Fluorescent excitation analysis: a simplified method of iodine determination in vitro, Invest. Radiol. 7, 335–338 (1972).CrossRefGoogle Scholar
  49. 49.
    J. A. Nelson, Studies of the kinetics of X-ray contrast agents using fluorescent excitation analysis, in Medical Applications of Fluorescent Excitation Analysis (L. Kaufman and D. C. Price, eds.), pp. 129–135, Plenum, New York (1979).Google Scholar
  50. 50.
    L. Kaufman, D. Shames, and M. Powell, An absorption correction technique for in vivo iodine quantitation by fluorescent excitation, Invest. Radiol. 8, 167–169 (1973).CrossRefGoogle Scholar
  51. 51.
    N. Alazraki, J. W. Verba, J. E. Henry, R. Becker, A. Taylor, and S. E. Halpern, Noninvasive determination of glomerular filtration rate using X-ray fluorescence, Radiology 122, 183–186 (1977).Google Scholar
  52. 52.
    P. Guesry, L. Kaufman, S. Orloff, J. A. Nelson, S. Swann, and M. Holliday, Measurement of glomerular filtration rate by fluorescent excitation of nonradioactive meglumine iothalamate, Clin. Nephrol. 3, 134–138 (1975).Google Scholar
  53. 53.
    R. Cesareo, D. Del Principe, G. Mancuso, and D. B. Tallarida, In vitro labelling of platelets with stable selenocystine, Int. J. Appl. Radia. Isot. 27, 324–326 (1976).CrossRefGoogle Scholar
  54. 54.
    R. Cesareo, G. Tallarida, and F. Baldoni, Determination of hemodynamic parameters in the rabbit by X-ray fluorescence excitation, Int. J. Appl. Radia. Isot. 26, 285–289 (1975).CrossRefGoogle Scholar
  55. 55.
    P. B. Hoffer, R. E. Polcyn, R. Moody, H. J. Lowe, and A. Gottschalk, Fluorescence detection: application to the study of cerebral blood flow, J. Nucl. Med. 10, 651–653 (1969).Google Scholar
  56. 56.
    R. A. Moody, P. B. Hoffer, R. E. Polcyn, H. J. Lowe, A. Gottschalk, and G. D. Dobben, K-shell fluorescence for the study of regional cerebral blood flow, J. Neurosurg. 35, 181–184 (1971).CrossRefGoogle Scholar
  57. 57.
    M. F. Lubozynski, R. J. Baglan, G. R. Dyer, and A. B. Brill, Sensitivity of X-ray fluorescence for trace element determinations in biological tissues, Int. J. Appl. Rad. Isot. 23, 487–491 (1972).CrossRefGoogle Scholar
  58. 58.
    H. L. Cox and P. S. Ong, Sample mass determination using Compton-and total scattered excitation radiaton for energy-dispersive X-ray fluorescent analysis of trace elements in soft tissue specimens, Med. Phys. 4, 99–108 (1977).CrossRefGoogle Scholar
  59. 59.
    J. M. Jaklevic, W. R. French, T. W. Clarkson, and M. R. Greenwood, X-ray fluorescence analysis applied to small samples, in Advances in X-Ray Analysis vol. 21 (C. S. Barrett, D. E. Leyden, J. B. Newkirk, and C. O. Ruud, eds.), pp. 171–185, Plenum, New York (1978).Google Scholar
  60. 60.
    L. Kaufman, D. M. Shames, R. H. Greenspan, M. R. Powell, and V. Perez-Mendez, Cardiac output determination by fluorescence excitation in the dog, Invest. Radiol. 7, 365–368 (1972).CrossRefGoogle Scholar
  61. 61.
    M. E. Phelps, R. L. Grubb, Jr., and M. M. Ter-Pogossian, In vivo regional cerebral blood volume by X-ray fluorescence: Validation of method, J. Appl. Physiol. 35, 741–747 (1973).Google Scholar
  62. 62.
    F. Folkman, Progress in the description of ion induced X-ray production: Theory and implication for analysis, in Iron Beam Surface Layer Analysis vol. 2 ( O. Meyer, G. Linker, and F. Kappeler, eds.), Plenum, New York (1976).Google Scholar
  63. 63.
    L. R. Anspaugh, W. L. Robinson, W. H. Martin, and O. A. Lowe, Compilation of Published Information on Elemental Concentrations in Human Organs in Both Normal and Diseased States, UCLR-51013, Lawrence Radiation Laboratory Report, Berkeley, California (1976).Google Scholar
  64. 64.
    M. Dabek, N. A. Dyson, and A. E. Simpson, Quantitative applications of proton-induced X-ray emission analysis in the fields of medicine and biology, Proceedings of the Annual Conference of the Microbeam Analysis Society, Microbeam Analysis Society, Bethlehem, Pennsylvania (1977).Google Scholar
  65. 65.
    H. Kubo, Reproducibility of proton-induced elemental analysis in biological tissue sections, Nucl Instr. Meth. 121, 541–545 (1974).CrossRefGoogle Scholar
  66. 66.
    H. Kubo, S. Hashimoto, A. Ishibashi, R. Chiba, and H. Yokota, Simultaneous determinations of Fe, Cu, Zn, and Br concentrations in human tissue sections, Med. Phys. 3, 204–209 (1976).Google Scholar
  67. 67.
    R. L. Walter, R. D. Willis, W. F. Gutknecht, and J. M. Joyce, Analysis of biological, clinical, and environmental samples using proton-induced X-ray emission, Anal. Chem. 46, 843–855 (1974).CrossRefGoogle Scholar
  68. 68.
    H. A. Van Rinsvelt, R. D. Lear, and W. R. Adams, Human diseases and trace elements: investigation by proton-induced X-ray emission, Nucl. Instr. Meth. 142, 171 (1977).CrossRefGoogle Scholar
  69. 69.
    M. Berti, G. Buso, P. Colautti, G. Moschini, B. M. Stievano, and C. Tregnaghi, Determination of selenium in blood serum by proton-induced X-ray emission, Anal. Chem. 49, 1313–1315 (1977).CrossRefGoogle Scholar
  70. 70.
    R. C. Bearse, D. A. Close, J. J. Malanify, and C. J. Umbarger, Elemental analysis of whole body using proton-induced X-ray emission, Anal. Chem. 46, 499–503 (1974).CrossRefGoogle Scholar
  71. 71.
    H. Daniel, The muon as a tool for scanning the interior of the human body, Nuclearmedizin 8, 311–319 (1969).Google Scholar
  72. 72.
    L. Rosen, Relevance of particle accelerators to national goals, Science 173, 490–497 (1971).CrossRefGoogle Scholar
  73. 73.
    R. L. Hutson, J. J. Reidy, K. Sprunger, H. Daniel, and H. B. Knowles, Tissue chemical analysis with muonic X-rays, Radiology 120, 193–198 (1976).Google Scholar
  74. 74.
    J. C. Russ, Electron probe X-ray microanalysis—principles, in Electron Probe Microanalysis in Biology (D. A. Erasmus, ed.), pp. 5–36, Chapman and Hall, London (1978).Google Scholar
  75. 75.
    J. A. Chandler, The application of X-ray microanalysis in TEM to the study of ultrathin biological specimens—a review, in Electron Probe Microanalysis in Biology (D. A. Erasmus, ed.), pp. 37–93, Chapman and Hall, London (1978).Google Scholar
  76. 76.
    A. Ahmed, Calcification of human breast carcinomas: ultrastructural observations, J. Path. 117, 247–251 (1975).CrossRefGoogle Scholar
  77. 77.
    M. Ashraf and C. M. Bloor, X-ray microanalysis of mitochondrial deposits in ischaemic myocardium, Virchows Archiv. Cell Path. 22, 287–298 (1976).Google Scholar
  78. 78.
    M. Ashraf, H. D. Sybers, and C. M. Bloor, X-ray microanalysis of ischaemic myocardium, Exp. and Molec. Path. 24, 435–440 (1976).CrossRefGoogle Scholar
  79. 79.
    R. Yarom, P. D. Peters, M. Scripps, and S. Rogel, Effects of specimen preparation on intracellular myocardial calcium, Histochem. 38, 143–153 (1974).CrossRefGoogle Scholar
  80. 80.
    T. W. Davies and A. J. Morgan, The application of X-ray analysis in the transmission electron analytical microscope (TEAM) to the quantitative bulk analysis of biological microsamples, J. Microscopy 107, 47–54 (1976).CrossRefGoogle Scholar
  81. 81.
    J. A. Chandler, X-ray microanalysis of human chromosomes, Lancet 7859, 687 (1974).CrossRefGoogle Scholar
  82. 82.
    E. W. Dempsey, F. J. Agate, M. Lee, and M. L. Purkerson, Analysis of submicroscopic structures by their emitted X rays, J. Histochem. Cytochem. 21, 580–586 (1973).CrossRefGoogle Scholar
  83. 83.
    J. R. Baker and T. C. Appleton, A technique for electron microscope autoradiography and X-ray microanalysis of diffusible substances using freeze-dried fresh-frozen sections, J. Microscopy 108, 307–315 (1976).CrossRefGoogle Scholar
  84. 84.
    F. N. Ghadially, A. F. Oryschak, R. L. Ailsby, and P. N. Mehta, Electron probe X-ray microanalysis of siderosomes in haemarthrotic articular cartilage, Virchows Archiv. Cell Path. 16, 43–49 (1974).CrossRefGoogle Scholar
  85. 85.
    M. J. Murphy and J. C. Piscopo, Cellular iron in aplastic anaemic human bone marrow: a study by energy-dispersive analysis of X rays, J. Submicroscopic Cytol, 8, 269–276 (1976).Google Scholar
  86. 86.
    K. Griffiths. W. J. Henderson, J. A. Chandler, and C. A. F. Joslin, Ovarian cancer: some new analytical approaches, Postgrad. Med. J. 49, 69–72 (1973).CrossRefGoogle Scholar
  87. 87.
    A. González-Angulo and R. Azner-Ramos, Ultrastructural studies on the endometrium of women wearing T-Cu 200 IUDs by means of transmission and scanning EM and X-ray dispersive analysis, Amer. J. Obs. Gyn. 125, 170–178 (1976).Google Scholar
  88. 88.
    J. A. Grimaud, J. C. Czyba, and N. Guillot, Energy-dispersive X-ray spectrometry of human spermatozoa in electron microscopy, Comptes Rendus des Seances de la Societe de Biologie 170, 1233–1236 (1977).Google Scholar
  89. 89.
    W. J. Henderson, D. M. D. Evans, J. D. Davies, and K. Griffiths, Analysis of particles in stomach tumours from Japanese males, Environ. Res. 9, 240–249 (1975).CrossRefGoogle Scholar
  90. 90.
    L. Herman, T. Sato, and C. N. Hales, The electron microscopic localization of cations to pancreatic islets of Langerhans and their possible role in insulin secretion, J. Ultrastructure Res. 42, 298–311 (1973).CrossRefGoogle Scholar
  91. 91.
    S. Hodson and J. Marshall, Tissue sodium and potassium: direct detection in the electron microscope, Experientia 26, 1283–1284 (1970).CrossRefGoogle Scholar
  92. 92.
    J. B. Kirkham, L. J. Goodman, and R. L. Chappel, Identification of cobalt in processes of stained neurons using energy spectra in the electron microscope, Brain Res. 85, 33–37 (1975).CrossRefGoogle Scholar
  93. 93.
    R. J. Skaer and P. D. Peters, The state of chlorine and potassium in human platelets and red cells, Nature 257, 719–720 (1975).CrossRefGoogle Scholar
  94. 94.
    K. Takaya, Intranuclear silicon detection in a subcutaneous connective tissue cell by energy-dispersive X-ray microanalysis using fresh air-dried spread, J. Histochem. Cytochem. 23, 681–685 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Paul A. Feller
    • 1
  • James G. Kereiakes
    • 2
  • Stephen R. Thomas
    • 2
  1. 1.Department of RadiologyThe Jewish HospitalCincinnatiUSA
  2. 2.Department of RadiologyUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations