Advertisement

Glycoproteins Specified by Herpes Simplex Viruses

  • Patricia G. Spear
Part of the The Viruses book series (VIRS)

Abstract

Membrane glycoproteins specified by enveloped viruses are important determinants of viral pathogenecity. They are exposed on the surfaces of virions and on the surfaces of infected cells. They mediate entry of the virus into cells and cell-to-cell spread of infection and also influence tissue tropism and host range. As a consequence of the foregoing, viral membrane glycoproteins are also probably the most important elicitors of protective immune responses.

Keywords

Infected Cell Golgi Apparatus Herpes Simplex Virus Type Cell Fusion Vesicular Stomatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R., Glorioso, J. C., Cossman, J., and Levine, M., 1978, Possible role of Fc receptors on cells infected and transformed by herpesvims: Escape from immune cytolysis, Infect. Immun. 21: 442Google Scholar
  2. Balachandran, N., Harnish, D., Killington, R. A., Bacchetti, S., and Rawls, W. E., 1981, Monoclonal antibodies to two glycoproteins of herpes simplex virus type 2, J. Virol. 39: 438Google Scholar
  3. Balachandran, N., Harnish, D., Rawls, W. E., and Bacchetti, S., 1982, Glycoproteins of herpes simplex virus type 2 as defined by monoclonal antibodies, J. Virol. 44: 344Google Scholar
  4. Basu, S. K., Goldstein, I. L., Anderson, R. G. W., and Brown, M. S., 1981, Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts, Cell 24: 493PubMedGoogle Scholar
  5. Baucke, R. B., and Spear, P. G., 1979, Membrane proteins specified by herpes simplex viruses. V. Identification of an Fc-binding glycoprotein, J. Virol. 32: 779Google Scholar
  6. Becker, Y., Shlomai, J., Asher, Y., Weinberg, E., Cohen, Y., Olshevsky, U., and Kotler, M., 1974, Interaction of herpes simplex virus type 1 with Rous sarcoma virus-transformed rat cells [XC and R(B77) cell lines], Intervirology 4: 325PubMedGoogle Scholar
  7. Blobel, G., Walter, P., Chang, C. N., Goldman, B. M., Erikson, A. H., and Lingappa, V. R., 1979, Translocation of proteins across membranes: The signal hypothesis and beyond, Symp. Soc. Exp. Biol. 33: 9Google Scholar
  8. Bond, V. C., and Person, S., 1984, Fine structure physical map locations of alterations that affect cell fusion in herpes simplex virus type I, Virology 132: 368PubMedGoogle Scholar
  9. Bourkas, A. E., and Menezes, J., 1979, Studies on the induction of IgG-Fc receptors and synthesis of IgM in primary and chronically infected lymphoid (Raji) cells by herpes simplex virus, J. Gen. Virol. 44: 361Google Scholar
  10. Bzik, D. J., Fox, B. A., DeLuca, N. A., and Person, S., 1984, Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1, Virology 133: 301PubMedGoogle Scholar
  11. Campadelli-Fiume, G., Sinibaldi-Vallebona, P., Cavrini, V., and Mannini-Palenzona, A., 1980, Selective inhibition of herpes simplex virus glycoprotein synthesis by a benzamidino-hydrazone derivative, Arch. Virol. 66: 179Google Scholar
  12. Campadelli-Fiume, G., Poletti, L., Dall’Olio, F., and Serafini-Cessi, F., 1982, Infectivity and glycoprotein processing of herpes simplex virus type 1 grown in a ricin-resistant cell line deficient in N-acetylglucosaminyl transferase I, J. Virol. 43: 1061Google Scholar
  13. Campbell, W. F., Murray, B. K., Biswal, N., and Benyesh-Melnick, M., 1974, Restriction of herpes simplex virus type I replication in oncornavirus transformed cells, J. Natl. Cancer Inst. 52: 757Google Scholar
  14. Cassai, E., Manservigi, R., Corallini, A., andTerni, M., 1975/76, Plaque dissociation of herpes simplex vims: Biochemical and biological characters of the viral mutants, Intervirology 6: 212Google Scholar
  15. Centifanto-Fitzgerald, Y. M., Yamaguchi, T., Kaufman, H. E., Tognon, M., and Roizman, B., 1982, Ocular disease pattern induced by herpes simplex vims is genetically determined by a specific region of viral DNA, J. Exp. Med. 155: 475Google Scholar
  16. Cines, D. B., Lyss, A. P., Bina, M., Corkey, R., Klialidis, N. A., and Friedman, H. M., 1982, Fc and C3 receptors induced by herpes simplex vims on cultured human endothelial cells, J. Clin. Invest. 69: 123Google Scholar
  17. Cohen, G., Halliburton, I., and Eisenberg, R., 1981, Glycoproteins of herpesviruses, in: The Human Herpesviruses: An Interdisciplinary Perspective ( A. J. Nahmias, W. R. Dowdle, and R. F. Shinazi, eds.), pp. 549–554, Elsevier/North-Holland, AmsterdamGoogle Scholar
  18. Cohen, G. H., Katze, M., Hydrean-Stern, C., and Eisenberg, R. J., 1978, Type-Common CP- 1 antigen of herpes simplex vims is associated with a 59,000-molecular-weight envelope glycoprotein, J. Virol. 27: 172Google Scholar
  19. Cohen, G. H., Long, D., and Eisenberg, R. J., 1980, Synthesis and processing of glycoproteins gD and gC of herpes simplex vims type 1, J. Virol. 36: 429Google Scholar
  20. Cohen, G. H., Long, D., Matthews, J. T., May, M., and Eisenberg, R., 1983, Glycopeptides of the type-common glycoprotein gD of herpes simplex vims types 1 and 2, J. Virol. 46: 679Google Scholar
  21. Compton, T., and Courtney, R. J., 1983, Synthesis and localization of the nonglycosylated precursor glycoproteins in herpes simplex vims type 1 (HSV-1 (-infected cells, Abstract of paper presented at the International Herpes vims Workshop, Oxford, EnglandGoogle Scholar
  22. Compton, T., and Courtney, R. J., 1984, Vims-specific glycoproteins associated with the nuclear fraction of herpes simplex vims type 1-infected cells, J. Virol. 49: 594Google Scholar
  23. Costa, J. C., and Rabson, A. S., 1975, Role of Fc receptors in herpes simplex vims infection, Lancet 1: 77PubMedGoogle Scholar
  24. Costa, J., Rabson, A. S., Yee, C., and Tralka, T. S., 1977, Immunoglobulin binding to herpes vims-induced Fc receptors inhibits virus growth, Nature 269: 251PubMedGoogle Scholar
  25. Costa, J., Yee, C., Nakamura, Y., and Rabson, A., 1978, Characteristics of the Fc receptor induced by herpes simplex vims, Intervirology 10: 32PubMedGoogle Scholar
  26. Courtney, R. J., Steiner, S. M., and Benyesh-Melnick, M., 1973, Effects of 2-deoxy-D-glucose on herpes simplex vims replication, Virology 52: 447PubMedGoogle Scholar
  27. DeLuca, N., Bzik, D., Person, S., and Snipes, W., 1981, Early events in herpes simplex vims type 1 infection; Photosensitivity of fluorescein isothiocyanate-treated virions, Proc. Natl. Acad. Sci. USA 78: 912PubMedGoogle Scholar
  28. DeLuca, N., Bzik, D. J., Bond, V. C., Person, S., and Snipes, W., 1982, Nucleotide sequences of herpes simplex type 1 (HSV-1) affecting vims entry, cell fusion, and production of glycoprotein gB (VP7), Virology 122: 411Google Scholar
  29. Dierich, M. P., Landen, B., Schulz, T., and Falke, D., 1979, Protease activity on the surface of HSV-infected cells, J. Gen. Virol. 45: 241Google Scholar
  30. Docherty, J. J., Mitchel, W. R., and Thompson, C. J., 1973, Abortive herpes simplex virus replication in Rous sarcoma vims transformed cells (37665), Proc. Soc. Exp. Biol. Med. 144: 697Google Scholar
  31. Dunphy, W. G., Fries, E., Urbani, L.., and Rothman, J. E., 1981, Early and late functions associated with the Golgi apparatus reside in distinct compartments, Proc. Natl. Acad. Sci. USA 78: 7453PubMedGoogle Scholar
  32. Eberle, R., and Courtney, R. J., 1980a, Preparation and characterization of specific antisera to individual glycoprotein antigens comprising the major glycoprotein region of herpes simplex virus type 1, J. Virol. 35: 902Google Scholar
  33. Eberle, R., and Courtney, R. J., 1980b, gA and gB glycoproteins of herpes simplex virus type I: Two forms of a single polypeptide, J. Virol. 36: 665Google Scholar
  34. Eberle, R., and Courtney, R. J., 1982, Multimeric forms of herpes simplex virus type 2 glycoproteins, J. Virol. 41: 348Google Scholar
  35. Eisenberg, R. J., Hydrean-Stern, C., and Cohen, G. H., 1979, Structural analysis of precursor and product forms of type-common envelope glycoprotein D (CP-1 antigen) of herpes simplex virus type 1, J. Virol. 31: 608Google Scholar
  36. Eisenberg, R. J., Long, D., Pereira, L., Hampar, B., Zweig, M., and Cohen, G. H., 1982a, Effect of monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex virus type 1, J. Virol. 41: 478Google Scholar
  37. Eisenberg, R. J., Ponce de Leon, M., Pereira, L., Long, D., and Cohen, G. H., 1982b, Purification of glycoprotein gD of herpes simplex virus types 1 and 2 by use of monoclonal antibody, J. Virol. 41: 1099Google Scholar
  38. Eisenberg, R. J., Long, D., Hogue-Angeletti, R., and Cohen, G. H., 1984, Amino terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2, J. Virol. 49: 265Google Scholar
  39. Epstein, A. L., and Jacquemont, B., 1983, Virus polypeptide synthesis induced by herpes simplex virus in non-permissive rat XC cells, J. Gen. Virol. 64: 1499Google Scholar
  40. Epstein, A., Jacquemont, B., and Machuca, I., 1983, Differences in penetration into non- permissive XC cells between different strains of herpes simplex virus type 1. Ann. Virol. (Inst. Pasteur) 134E: 439Google Scholar
  41. Epstein, A., Jacquemont, B. and Machuca, I., 1984, Infection of a restrictive cell line (XC cells) by intratypic recombinants of HSV-1: Relationship between penetration of the virus and relative amounts of glycoprotein C, Virology 132: 315PubMedGoogle Scholar
  42. Epstein, M. A., 1962, Observations on the mode of release of herpes virus from infected HeLa cells, J. Cell Biol. 12: 589PubMedGoogle Scholar
  43. Eylar, E. H., 1965, On the biological role of glycoproteins, J. Theor. Biol. 10: 89Google Scholar
  44. Feorino, P. M., Shore, S. L., and Reimer, C. B., 1977, Detection by indirect immunofluo-rescence of Fc receptors in cells acutely infected with herpes simplex virus, Int. Arch. Allergy Appl. Immunol. 53: 222Google Scholar
  45. Friedman, H. M., Cohen, G. H., Eisenberg, R. J., Seidel, C. A., and Cines, D. B., 1984, Glycoprotein C of HSV-1 functions as a C3b receptor on infected endothelial cells, Nature 309: 633PubMedGoogle Scholar
  46. Frink, R. J., Eisenberg, R., Cohen, G., and Wagner, E. K., 1983, Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C, J. Virol. 45: 634Google Scholar
  47. Gallaher, W. R., Levitan, D. B., and Blough, H. A., 1973, Effect of 2-deoxy-D-glucose on cell fusion induced by Newcastle disease and herpes simplex viruses, Virology 55: 193PubMedGoogle Scholar
  48. Garfinkle, B., and McAuslan, B. R., 1973, Non-cytopathic, nonproductive infection by herpes simplex viruses types 1 and 2, Intervirology 1: 362PubMedGoogle Scholar
  49. Garfinkle, B., and McAuslan, B. R., 1974, Regulation of herpes simplex virus-induced thymidine kinase, Biochem. Biophys. Res. Commun. 58: 822Google Scholar
  50. Gibson, M. G., and Spear, P. G., 1983, Insertion mutants of herpes simplex virus have a duplication of the gD gene and express two different forms of gD, J. Virol. 48: 396Google Scholar
  51. Gibson, R., Kornfeld, S., and Schlesinger, S., 1980, A role of oligosaccharides in glycoprotein synthesis, Trends Biochem. Sci. 5: 290Google Scholar
  52. Gibson, R., Kornfeld, S., and Schlesinger, S., 1980, A role of oligosaccharides in glycoprotein synthesis, Trends Biochem. Sci. 5: 290Google Scholar
  53. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, coated vesicles, and receptor-mediated endocytosis, Nature 279: 679PubMedGoogle Scholar
  54. Haarr, L., and Marsden, H. S., 1981, Two-dimensional gel analysis of HSV type 1-induced polypeptides and glycoprotein processing, J. Gen. Virol. 52: 77Google Scholar
  55. Haffey, M. L., and Spear, P. G., 1980, Alterations in glycoprotein gB specified by mutants and their partial revertants in herpes simplex virus type 1 and relationship to other mutant phenotypes, J. Virol. 35: 114Google Scholar
  56. Hammarstrom, S., Murphy, L. A., Goldstein, I. J., and Etzler, M. E., 1977, Carbohydrate binding specificity of four N-acetyl-D-galactosamine-“specific” lectins: Helix pomatia A hemagglutinin, soybean agglutinin, lima bean agglutinin and Dolichos biflorus lectin, Biochemistry 16: 2750PubMedGoogle Scholar
  57. Heine, J. W., Spear, P. G., and Roizman, B., 1972, Proteins specified by herpes simplex virus. VI. Viral proteins in the plasma membrane, J. Virol. 9: 431Google Scholar
  58. Heine, J. W., Honess, R. W., Cassai, E., and Roizman, B., 1974, Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains, J. Virol. 14: 640Google Scholar
  59. Helenius, A., Kartenbeck, J., Simons, K., and Fries, E., 1980, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol 84: 404Google Scholar
  60. Henning, R., and Lange-Mutschler, J., 1983, Tightly associated lipids may anchor SV40 large T antigen in plasma membrane, Nature 305: 736PubMedGoogle Scholar
  61. Hoggan, M. Dv and Roizman, B., 1959, The isolation and properties of a variant of herpes simplex producing multinucleated giant cells in monolayer cultures in the presence of antibody, Am. J. Hyg. 70: 208Google Scholar
  62. Holland, T. C., and Person, S., 1977, Ammonium chloride inhibits cell fusion induced by syn mutants of herpes simplex virus type 1, J. Virol 23: 213Google Scholar
  63. Holland, T. C., Marlin, S. D., Levine, M., and Glorioso, J., 1983a, Antigenic variants of herpes simplex virus selected with glycoprotein-specific monoclonal antibodies, J. Virol 45: 672Google Scholar
  64. Holland, T. C., Sandri-Goldin, R. M., Holland, L. E., Marlin, S. D., Levine, M., and Glorioso, J. C., 1983b, Physical mapping of the mutation in an antigenic variant of herpes simplex virus type 1 by use of an immunoreactive plaque assay, J. Virol 46: 649Google Scholar
  65. Holland, T. C., Sandri-Goldin, R. M., Holland, L. E., Marlin, S. D., Levine, M., and Glorioso, J. C., 1983b, Physical mapping of the mutation in an antigenic variant of herpes simplex virus type 1 by use of an immunoreactive plaque assay, J. Virol 46: 649Google Scholar
  66. Homma, M., and Ohuchi, M., 1973, Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural difference of Sendai viruses grown in eggs and tissue culture cells, J. Virol 12: 1457Google Scholar
  67. Honess, R. W., and Roizman, B., 1974, Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins, J. Virol 14: 8Google Scholar
  68. Honess, R. W., and Roizman, B., 1975, Proteins specified by herpex simplex virus. XIII. Glycosylation of viral polypeptides, J. Virol 16: 1308Google Scholar
  69. Honess, R. W. and Watson, D. H., 1974, Herpes simplex virus-specific polypeptides studied by polyacrylamide gel electrophoresis of immune precipitates, J. Gen. Virol 22: 171Google Scholar
  70. Honess, R. W., Buchan, A., Halliburton, I. W., and Watson, D. H., 1980, Recombination and linkage between structural and regulatory genes of herpes simplex virus type I: Study of the functional organization of the genome, J. Virol. 34: 716PubMedGoogle Scholar
  71. Hope, R. G., and Marsden, H. S., 1983, Processing of glycoproteins induced by herpes simplex virus type 1: Sulphation and nature of the oligosaccharide chains, J. Gen. Virol 64: 1943Google Scholar
  72. Hope, R. G., Palfreyman, J., Suh, M., and Marsden, H. S., 1982, Sulphated glycoproteins induced by herpes simplex virus, J. Gen. Virol. 58: 399Google Scholar
  73. Huang, C. C., and Aminoff, D., 1972, Enzymes that destroy blood group specificity. V. The oligosaccharidase of Clostridium perfringens, J. Biol. Chem. 247: 6737Google Scholar
  74. Huttner, W. B., 1982, Sulphation of tyrosine residues—A widespread modification of proteins, Nature 299: 273PubMedGoogle Scholar
  75. Ikura, K., Betz, J. L., Sadler, J. R., and Pizer, L. I., 1983, RNAs transcribed from a 3.6-kilobase Smal fragment of the short unique region of the herpes simplex virus type 1 genome, J. Virol 48: 460Google Scholar
  76. Johnson, D. C., and Spear, P. G., 1982, Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface and the egress of virions from infected cells, J. Virol 43: 1102Google Scholar
  77. Johnson, D. C., and Spear, P. G., 1983, O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus, Cell 32: 987PubMedGoogle Scholar
  78. Johnson, D. C., and Spear, P. G., 1984, Evidence for translational regulation of herpes simplex virus type 1 gD expression, J. Virol. 51: 389Google Scholar
  79. Katsumoto, T., Hirano, A., Kurimura, T., and Takagi, A., 1981, In situ electron micro¬scopical observation of cells infected with herpes simplex virus, J. Gen. Virol. 52: 267Google Scholar
  80. Katz, E., Margalith, E., and Duksin, D., 1980, Antiviral activity of tunicamycin on herpes simplex virus, Antimicrob. Agents Chemother. 17: 1014Google Scholar
  81. Keller, J. M., 1976, The expression of the syn- gene of herpes simplex virus type 1. II. Requirements for macromolecular synthesis, Virology 72: 402PubMedGoogle Scholar
  82. Keller, R., Peitchel, R., Goldman, J. N., and Goldman, M., 1976, An IgG-Fc receptor induced in cytomegalovirus-infected human fibroblasts, J. Immunol. 116: 772Google Scholar
  83. Klenk, H.-D., Rott, R., Orlich, M., and Blödorn, J., 1975, Activation of influenza virus by trypsin treatment, Virology 68: 426PubMedGoogle Scholar
  84. Knowles, R. W., and Person, S., 1976, Effects of 2-deoxyglucose, glucosamine, and mannose on cell fusion and the glycoproteins of herpes simplex virus, J. Virol. 18: 644Google Scholar
  85. Kornfeld, R., and Kornfeld, S., 1976, Comparative aspects of glycoprotein structure, Annu. Rev. Biochem. 45: 217Google Scholar
  86. Kornfeld, R., and Kornfeld, S., 1980, Structure of glycoproteins and their oligosaccharide units, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. J. Lennarz, ed.), pp. 1 - 34, Plenum Press, New YorkGoogle Scholar
  87. Kousoulas, K. G., Person, S., and Holland, T. C., 1978, Timing of some of the molecular events required for cell fusion induced by herpes simplex virus type 1, J. Virol. 27: 505Google Scholar
  88. Kousoulas, K. G., Person, S., and Holland, T. C., 1982, Herpes simplex virus type 1 cell fusion occurs in the presence of ammonium chloride-inhibited glycoproteins, Virology 123: 257PubMedGoogle Scholar
  89. Kousoulas, K. G., Bzik, D. J., DeLuca, N., and Person, S., 1983, The effect of ammonium chloride and tunicamycin on the glycoprotein content and infectivity of herpes simplex virus type 1, Virology 125: 468PubMedGoogle Scholar
  90. Kousoulas, K. G., Pellett, P. E., Pereira, L., and Roizman, B., 1984, Mutations affecting conformation or sequence of neutralizing epitopes identified by reactivity of viable plaques segregate from syn and ts domains of HSV-1(F) gB gene, Virology 135: 379PubMedGoogle Scholar
  91. Kreil, G., 1981, Transfer of proteins across membranes, Annu. Rev. Biochem. 50: 317Google Scholar
  92. Kumarasamy, R., and Blough, H. A., 1982, Characterization of oligosaccharides of highly purified glycoprotein gC of herpes simplex vims type 1 (HSV-1), Biochem. Biophys. Res. Commun. 109: 1108Google Scholar
  93. Lazarowitz, S. G., and Choppin, P., 1975, Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide, Virology 68: 440PubMedGoogle Scholar
  94. Lee, G. T.-Y., Para, M. F., and Spear, P. G., 1982a, Location of the structural genes for glycoproteins gD and gE and for other polypeptides in the S component of herpes simplex virus type 1 DNA, J. Virol. 43: 41Google Scholar
  95. Lee, G. T.-Y., Pogue-Geile, K. L., Pereira, L., and Spear, P. G., 1982b, Expression of herpes simplex vims glycoprotein C from a DNA fragment inserted into the thymidine kinase gene of this vims, Proc. Natl. Acad. Sci. USA 79: 6612PubMedGoogle Scholar
  96. Lehner, T., Wilton, J. M. A., and Shillitoe, E. J., 1975, Immunological basis for latency, recurrences, and putative oncogenicity of herpes simplex virus, Lancet ii:60Google Scholar
  97. Lenard, J., and Miller, D. K., 1983, Entry of enveloped vimses into cells, in: Receptormediated Endocytosis and Processing ( P. Cuatrecasas and T. Roth, eds.), pp. 121–138, Chapman & Hall, LondonGoogle Scholar
  98. Little, S. P., and Schaffer, P. A., 1981, Expression of the syncytial [syn] phenotype in HSV- 1, strain KOS: Genetic and phenotypic studies of mutants in two syn loci, Virology 112: 686PubMedGoogle Scholar
  99. Little, S. P., Jofre, J. T., Courtney, R. J., and Schaffer, P. A., 1981, A virion-associated glycoprotein essential for infectivity of herpes simplex vims type 1, Virology 115: 149PubMedGoogle Scholar
  100. McTaggart, S. P., Burns, W. H., White, D. O., and fackson, D. C. 1978, Fc receptors induced by herpes simplex virus. I. Biologic and biochemical properties, J. Immunol. 121: 726Google Scholar
  101. Manservigi, R., Spear, P. G., and Buchan, A., 1977, Cell fusion induced by herpes simplex virus is promoted and suppressed by different viral glycoproteins, Proc. Natl. Acad. Sci. USA 74: 3913PubMedGoogle Scholar
  102. Marsden, H. S., Stow, N. D., Preston, V. G., Timbury, M. C., and Wilkie, N. M., 1978, Physical mapping of herpes simplex virus-induced polypeptides, J. Virol. 28: 624Google Scholar
  103. Marsden, H. S., Buckmaster, A., Palfreyman, J. W., Hope, R. G., and Minson, A. C., 1984, Characterization of the 92,000 dalton glycoprotein induced by herpes simplex virus type 2, J. Virol. 50: 547Google Scholar
  104. Marshall, R. D., 1974, The nature and metabolism of the carbohydrate-peptide linkage of glycoproteins, Biochem. Soc. Symp. 40: 17Google Scholar
  105. Marshall, R. D., and Neuberger, A., 1977, Aspects of the structure and metabolism of glycoproteins, Adv. Carbohydr. Chem. Biochem. 25: 407Google Scholar
  106. Matlin, K. S., Reggio, H., Helenius, A., and Simons, K., 1981, Infection entry pathway of influenza virus in a canine kidney cell line, J. Cell Biol. 91: 601Google Scholar
  107. Matlin, K. S., Reggio, H., Helenius, A., and Simons, K., 1982, Pathway of vesicular stomatitis virus entry leading to infection, J. Mol. Biol. 156: 609Google Scholar
  108. Matthews, J. T., Cohen, G. H., and Eisenberg, R. J., 1983, Synthesis and processing of glycoprotein D of herpes simplex virus types 1 and 2 in an in vitro system, J. Virol. 48: 521Google Scholar
  109. Morgan, C. H., Rose, M., Holden, M., and Jones, E. P., 1959, Electron microscopic observations on the development of herpes simplex virus, J. Exp. Med. 110: 643Google Scholar
  110. Morgan, C., Rose, H. M., and Mednis, B., 1968, Electron microscopy of herpes simplex virus. I. Entry, J. Virol. 2: 507Google Scholar
  111. Morse, L. S., Buchman, T. G., Roizman, B., and Schaffer, P. A., 1977, Anatomy of herpes simplex virus DNA. IX. Apparent exclusion of some parental DNA arrangements in the generation of intertypic (HSV-1 x HSV-2) recombinants, J. Virol. 24: 231Google Scholar
  112. Nagai, Y., Hamaguchi, M., Toyoda, T., and Yoshida, T., 1983, The uncoating of paramyxoviruses may not require a low pH mediated step, Virology 130: 263PubMedGoogle Scholar
  113. Nakamura, Y., Costa, J., Tralka, T. S., Yee, C. L., and Rabson, A. S., 1978, Properties of the cell surface Fc-receptor induced by herpes simplex virus, J. Immunol. 121: 1128Google Scholar
  114. Nii, S., Morgan, C., Rose, H. M., and Hsu, K. C., 1968, Electron microscopy of herpes simplex virus. IV. Studies with ferritin-conjugated antibodies, J. Virol. 2: 1172Google Scholar
  115. Noble, A. G., Lee, G. T.-Y., and Spear, P. G., 1983, Anti-gD monoclonal antibodies inhibit cell fusion induced by herpes simplex virus type 1, Virology 129: 218PubMedGoogle Scholar
  116. Norrild, B., 1980, Immunochemistry of herpes simplex virus glycoproteins, Curr. Top. Microbiol. Immunol. 90: 67Google Scholar
  117. Norrild, B., and Pedersen, B., 1982, Effect of tunicamycin on the synthesis of herpes simplex virus type 1 glycoproteins and their expression on the cell surface, J. Virol. 43: 395Google Scholar
  118. Norrild, B. and Vestergaard, B. F., 1977, Polyacrylamide gel electrophoretic analysis of herpes simplex virus type 1 immunoprecipitates obtained by quantitative Immunoelectrophoresis in antibody-containing agarose gel, J. Virol. 22: 113Google Scholar
  119. Ogata, M., and Shigeta, S., 1979, Appearance of immunoglobulin G Fc receptors on cultured human cells infected with varicella-zoster virus, Infect. Immun. 26: 770Google Scholar
  120. Olofsson, S., and Lycke, E., 1980, Glucosamine metabolism of herpes simplex virus infected cells: Inhibition of glycosylation by tunicamycin and 2-deoxy-D-glucose, Arch. Virol. 65: 201Google Scholar
  121. Olofsson, S., Jeansson, S., and Lycke, E., 1981a, Unusual lectin-binding properties of a herpes simplex virus type 1-specific glycoprotein, J. Virol. 38: 564Google Scholar
  122. Olofsson, S., Blomberg, J., and Lycke, E., 1981b, O-glycosidic carbohydrate-peptide linkages of herpes simplex virus glycoproteins, Arch. Virol. 70: 321Google Scholar
  123. Olofsson, S., Norrild, B., Andersen, A. B., Pereira, L., Jeansson, S., and Lycke, E., 1983a, Populations of herpes simplex virus glycoprotein gC with and without affinity for the N-acetyl-galactosamine specific lectin of Helix pomatia, Arch. Virol. 76: 25Google Scholar
  124. Olofsson, S., Sjöblom, I., Lundström, M., Jeansson, S., and Lycke, E., 1983b, Glycoprotein C of herpes simplex vims type 1: Characterization of O-linked oligosaccharides, J. Gen. Virol. 64: 2735Google Scholar
  125. Padgett, R. A., Moore, D. F., and Kingsbury, D. T., 1978, Herpes simplex vims nucleic acid synthesis fdllowing infection of non-permissive XC cells, J. Gen. Virol. 40: 605Google Scholar
  126. Palfreyman, J. W., Haarr, L., Cross, A., Hope, R. G., and Marsden, H. S., 1983, Processing of herpes simplex vims type 1 glycoproteins: Two-dimensional gel analysis using monoclonal antibodies, J. Gen. Virol. 64: 873Google Scholar
  127. Para, M. F., Baucke, R. B., and Spear, P. G., 1980, Immunoglobulin G(Fc)-binding receptors on virions of herpes simplex vims type 1 and transfer of these receptors to the cell surface by infection, J. Virol. 34: 512Google Scholar
  128. Para, M. F., Baucke, R. B., and Spear, P. G., 1982a, Glycoprotein gE of herpes simplex vims type 1: Effects of anti-gE on virion infectivity and on vims-induced Fc-binding receptors, J. Virol. 41: 129Google Scholar
  129. Para, M. F., Goldstein, L., and Spear, P. G., 1982b, Similarities and differences in the Fc-binding glycoprotein (gE) of herpes simplex vims types 1 and 2 and tentative mapping of the viral gene for this glycoprotein, J. Virol. 41: 137Google Scholar
  130. Para, M. F., Zezulak, K. M., Conley, A. J., Weinberger, M., Snitzer, K., and Spear, P. G., 1983, Use of monoclonal antibodies against two 75,000-molecular-weight glycoproteins specified by herpes simplex vims type 2 in glycoprotein identification and gene mapping, J. Virol. 45: 1223Google Scholar
  131. Peake, M. L., Nystrom, P., and Pizer, L. I., 1982, Herpesvims glycoprotein synthesis and insertion into plasma membranes, J. Virol. 42: 678Google Scholar
  132. Pereira, L., Klassen, T., and Baringer, J. R.; 1980, Type-common and type-specific monoclonal antibody to herpes simplex vims type 1, Infect. Immun. 29: 724Google Scholar
  133. Pereira, L., Dondero, D., Morrild, B., and Roizman, B., 1981, Differential immunologic reactivity and processing of glycoproteins gA and gB of herpes simplex virus types 1 and 2 made in Vero and HEp-2 cells, Proc. Natl. Acad. Sci. USA 78: 5202PubMedGoogle Scholar
  134. Pereira, L., Dondero, D., and Roizman, B., 1982a, Herpes simplex vims glycoprotein gA/B: Evidence that the infected Vero cell products comap and arise by proteolysis J. Virol. 44: 88Google Scholar
  135. Pizer, L. I., Cohen, G. H., and Eisenberg, R. J., 1980, Effect of tunicamycin on herpes simplex vims glycoproteins and infectious vims production, J. Virol. 34: 142Google Scholar
  136. Pizer, L. I., Cohen, G. H., and Eisenberg, R. J., 1980, Effect of tunicamycin on herpes simplex vims glycoproteins and infectious vims production, J. Virol. 34: 142Google Scholar
  137. Pomato, N., and Aminoff, D., 1978, a-D-N-Acetylgalactosaminyl-oligosaccharidase of Clostridium perfringens, Fed. Proc. 37: 1602Google Scholar
  138. Powell, K. L., Buchan, A., Sim, C., and Watson, D. H., 1974, Type-specific protein in herpes simplex vims envelope reacts with neutralizing antibody, Nature 249: 360PubMedGoogle Scholar
  139. Prehm, P., Scheid, A., and Choppin, P. W., 1979, The carbohydrate stmcture of the glyco-proteins of the paramyxovirus SV5 grown in bovine kidney cells, J. Biol. Chem. 254: 9669Google Scholar
  140. Preston, V. G., Davison, A. J., Marsden, H. S., Timbury, M. C., Subak-Sharpe, J. H., and Wilkie, N. M., 1978, Recombinants between herpes simplex vims types 1 and 2: Analyses of genome stmctures and expression of immediate early polypeptides, J. Virol. 28: 499Google Scholar
  141. Rahman, A. A., Teschner, M., Sethi, K. K., and Brandis, H., 1976, Appearance of IgG (Fc) receptor(s) on cultured human fibroblasts infected with human cytomegalovims, J. Immunol. 117: 253Google Scholar
  142. Rector, J. T., Lausch, R. N., and Oakes, J. E., 1982, Use of monoclonal antibodies for analysis of antibody-dependent immunity to ocular herpes simplex virus type 1 infection, Infect. Immun. 38: 168Google Scholar
  143. Roizman, B., 1962, Polykaryocytosis, Cold Spring Harbor Symp. Quant. Biol. 27: 327Google Scholar
  144. Roizman, B., and Furlong, D., 1974, The replication of herpes viruses, in: Comprehensive Virology, Vol. 3 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 229–403, Plenum Press, New YorkGoogle Scholar
  145. Roizman, B., Norrild, B., Chan, C., and Pereira, L., 1984, Identification and preliminary mapping with monoclonal antibodies of a herpes simplex virus 2 glycoprotein lacking a known type 1 counterpart, Virology 133: 242PubMedGoogle Scholar
  146. Rose, J. K., and Gallione, C. J., 1981, Nucleotide sequences of the mRNAs encoding the vesicular stomatitis vims G and M proteins determined from cDNA clones containing the complete coding regions, J. Virol. 39: 519PubMedGoogle Scholar
  147. Rose, J. K., Welch, W. J., Sefton, B. M., Esch, F. S., and Ling, N. C, 1980, Vesicular stomatitis glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH-terminus, Proc. Natl. Acad. Sci. USA 77: 3884PubMedGoogle Scholar
  148. Ruyechan, W. T., Morse, L. S., Knipe, D. M., and Roizman, B., 1979, Molecular genetics of herpes simplex vims. II. Mapping of the major viral glycoproteins and of the genetic loci specifying the social behavior of infected cells, J. Virol. 29: 677Google Scholar
  149. Sanders, P. G., Wilkie, N. M., and Davison, A. J., 1982, Thymidine kinase deletion mutants of herpes simplex vims type 1, J. Gen. Virol. 63: 277Google Scholar
  150. Sarmiento, M., and Spear, P. G., 1979, Membrane proteins specified by herpes simplex vimses. IV. Conformation of the virion glycoprotein designated VP7(B2), J. Virol. 29: 1159Google Scholar
  151. Sarmiento, M., Haffey, M., and Spear, P. G., 1979, Membrane proteins specified by herpes simplex vimses. III. Role of glycoprotein VP7 (B2) in virion infectivity, J. Virol. 29: 1149Google Scholar
  152. Schachter, H., and Roseman, S., 1980, Mammalian glycosyltransferases: Their role in the synthesis and function of complex carbohydrates and glycolipids, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. J. Lennarz, ed.), pp. 86–160, Plenum Press, New YorkGoogle Scholar
  153. Schaffer, P. A., Carter, V. C., and Timbury, M. C., 1978, A collaborative complementation study of temperature-sensitive mutants of herpes simplex vims types 1 and 2, J. Virol. 27: 490Google Scholar
  154. Scheid, A., and Choppin, P. W., 1974, Identification of biological activities of paramyxovirus glycoproteins: Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai vims, Virology 57: 475PubMedGoogle Scholar
  155. Schmidt, M. F. G., 1983, Fatty acid binding: A new kind of posttranslational modification of membrane proteins, Curr. Top. Microbiol. Immunol. 102: 101Google Scholar
  156. Schmidt, M., and Schlesinger, M., 1979, Fatty acid binding to vesicular stomatitis vims glycoprotein: A new type of post-translational modification of the viral glycoprotein, Cell 17: 813PubMedGoogle Scholar
  157. Schmidt, M. F. G., and Schlesinger, M. J., 1980, Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis vims membrane glycoproteins, J. Biol. Chem. 255: 3334Google Scholar
  158. Schmidt, M. F. G., Bracha, M., and Schlesinger, M. J., 1979, Evidence for covalent attachment of fatty acids to Sindbis vims glycoproteins, Proc. Natl. Acad. Sci. USA 76: 1687PubMedGoogle Scholar
  159. Schwartz, J., and Roizman, B., 1969, Concerning the egress of herpes simplex vims from infected cells: Electron and light microscopic observations, Virology 38: 42PubMedGoogle Scholar
  160. Serafini-Cessi, F., and Campadelli-Fiume, G., 1981, Studies on benzhydrazone, a specific inhibitor of herpes vims glycoprotein synthesis: Size distribution of glycopeptides and endo-ß-N-acetylglucosaminidase-H treatment, Arch. Virol. 70: 331Google Scholar
  161. Serafini-Cessi, F., Dall’Olio, F., Scannavini, M., Costanzo, F., and Campadelli-Fiume, G., 1983a, N-acetylgalactosaminyl-transferase activity involved in O-glycosylation of herpes simplex vims type 1 glycoproteins, J. Virol. 48: 325Google Scholar
  162. Serafini-Cessi F., Dall’Olio, F., Scannavini, M., and Campadelli-Fiume, G., 1983b, Processing of herpes simplex virus-1 glycans in cells defective in glycosyl transferases of the Golgi system’: Relationship to cell fusion and virion egress, Virology 131: 59PubMedGoogle Scholar
  163. Showalter, S. D., Zweig, M., and Hampar, B., 1981, Monoclonal antibodies to herpes simplex vims type 1 proteins, including the immediate-early proteins ICP4, Infect. Immun. 34: 684Google Scholar
  164. Siminoff, P., and Menefee, M. G., 1966, Normal and 5-bromodeoxyuridine-inhibited de-velopment of herpes simplex virus: An electron microscope study, Exp. Cell Res. 44: 241Google Scholar
  165. Spear, P. G., 1976, Membrane proteins specified by herpes simplex virus. I. Identification of four glycoprotein precursors and their products in type 1-infected cells, J. Virol. 17: 991Google Scholar
  166. Spear, P. G., 1980, Herpesviruses, in: Cell Membranes and Viral Envelopes, Vol. 2 ( H. A. Blough and J. M. Tiffany, eds.), pp. 709–750, Academic Press, New YorkGoogle Scholar
  167. Spear, P. G., 1980, Herpesviruses, in: Cell Membranes and Viral Envelopes, Vol. 2 ( H. A. Blough and J. M. Tiffany, eds.), pp. 709–750, Academic Press, New YorkGoogle Scholar
  168. Spiro, R. G., 1966, Characterization of carbohydrate units of glycoproteins, Methods Enzymol. 8: 26Google Scholar
  169. Spivack, J. G., Prusoff, W. H., and Tritton, T. R., 1982, A study of the antiviral mechanism of action of 2-deoxy-D-glucose: Normally glycosylated proteins are not strictly required for herpes simplex virus attachment but increase viral penetration and infectivity, Virology 123: 123PubMedGoogle Scholar
  170. Stackpole, C. W., 1969, Herpes-type virus of the frog renal adenocarcinoma. I. Virus de-velopment in tumor transplants maintained at low temperature, J. Virol. 4: 75Google Scholar
  171. Struck, D. K., and Lennarz, W. J., 1980, The function of saccharide-lipids in synthesis of glycoproteins, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. J. Lennarz, ed.), pp. 35–83, Plenum Press, New YorkGoogle Scholar
  172. Svennerholm, B., Olofsson, S., Lunden, R., Vahlne, A., and Lycke, E., 1982, Adsorption and penetration of enveloped herpes simplex virus particles modified by tunicamycin or 2- deoxy-D-glucose, J. Gen. Virol. 63: 343Google Scholar
  173. Takatsuki, A., Kohno, K., and Tamura, G., 1975, Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin, Agric. Biol. Chem. 39: 2089Google Scholar
  174. Tarentino, A. L., and Maley, F., 1974, Purification and properties of an endo-ß-N-acetyl- glucosaminidase from Streptomyces griseus, J. Biol. Chem. 249: 811Google Scholar
  175. Tartakoff, A. M., and Vassalli, P., 1977, Plasma membrane immunoglobulin secretion: Ar¬rest is accompanied by alterations in the Golgi complex, J. Exp. Med. 146: 1332Google Scholar
  176. Tartakoff, A. M., and Vassalli, P., 1978, Comparative studies of intracellular transport of secretory proteins, J. Cell Biol. 79: 694Google Scholar
  177. Terni, M., and Roizman, B., 1970, Variability of herpes simplex virus: Isolation of two variants from simultaneous eruptions at different sites, J. Infect. Dis. 121: 212Google Scholar
  178. Tkacz, J. S., and Lampen, J. O., 1975, Tunicamycin inhibition of polyisoprenol N-acetyl- glucosaminyl pyrophosphate formation in calf liver microsomes, Biochem. Biophys. Res. Commun. 65: 248Google Scholar
  179. Tognon, M., Furlong, D., Conley, A. J., and Roizman, B., 1981, Molecular genetics of herpes simplex virus. V. Characterization of a mutant defective in ability to form plaques at low temperatures and in a viral function which prevents accumulation of coreless capsids at nuclear pores late in infection, J. Virol. 40: 870Google Scholar
  180. Uchida, N., Smilowitz, M., and Tanzer, M. L., 1979, Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts, Proc. Natl. Acad. Sci. USA 76: 1868PubMedGoogle Scholar
  181. Vahlne, A., Nyström, B., Sandberg, M., Hamberger, A., and Lycke, E., 1978, Attachment of herpes simplex vims to neurons and glial cells, J. Gen. Virol. 40: 359Google Scholar
  182. Vahlne, A., Svennerholm, B., and Lycke, E., 1979, Evidence for herpes simplex vims type selective receptors on cellular plasma membranes, J. Gen. Virol. 44: 217Google Scholar
  183. Vahlne, A., Svennerholm, B., Sandberg, M., Hamberger, A., and Lycke, E., 1980, Differences in attachment between herpes simplex type 1 and type 2 vimses to neurons and glial cells, Infect. Immun. 28: 675Google Scholar
  184. Vestergaard, B. F. and Norrild, B., 1978, Crossed immunoelectrophoretic analysis and viral neutralizing activity of five monospecific antisera against five different herpes simplex vims glycoproteins, IARC Sci. Publ. 24: 225Google Scholar
  185. Watkins, J. F., 1964, Adsorption of sensitized sheep erythrocytes to HeLa cells infected with herpes simplex virus, Nature 202: 1364PubMedGoogle Scholar
  186. Watson, D. H., and Honess, R. W., 1977, Polypeptides and antigens of herpes simplex virus: Their nature and relevance in chemotherapy and epidemiology of herpes infections, Ahtimicrob. Chemother. 3 (Suppl. A): 33Google Scholar
  187. Watson, D. H. and Wildy, P., 1969, The preparation of ’monoprecipitin’ antisera to herpes virus specific antigens, J. Gen. Virol. 4: 163Google Scholar
  188. Watson, R. J., Weis, J. H., Salstrom, J. S., and Enquist, L. W., 1982, Herpes simplex virus type 1 glycoprotein D Gene: Nucleotide sequence and expression in Escherichia coli, Science 218: 381PubMedGoogle Scholar
  189. Watson, R. J., Colberg-Poley, A. M., Marcus-Sekura, C. J., Carter, B. J., and Enquist, L. W., 1983, Characterization of the herpes simplex virus type 1 glycoprotein D mRNA and expression of this protein in Xenopus oocytes, Nucleic Acids Res. 11: 1507PubMedGoogle Scholar
  190. Wenske, E. A., and Courtney, R. J., 1983, Glycosylation of herpes simplex virus type 1 gC in the presence of tunicamycin, J. Virol 46: 297Google Scholar
  191. Wenske, E. A., Bratton, M. W., and Courtney, R. J., 1982, Endo-p-N-acetylglucosaminidase H sensitivity of precursors to herpes simplex virus type 1 glycoproteins gB and gC, J. Virol. 44: 241Google Scholar
  192. Westmoreland, D., and Watkins, J. F., 1974, The IgG receptor induced by herpes simplex virus: Studies using radioiodinated IgG, J. Gen. Virol. 24: 167Google Scholar
  193. Westmoreland, D., St. Jeor, S., and Rapp, F., 1976, The development by cytomegalovirus- infected cells of binding affinity for normal human immunoglobulin, J. Immunol. 116: 1566Google Scholar
  194. White, J., Kartenbeck, J., and Helenius, A., 1980, Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH, J. Cell Biol. 87: 264Google Scholar
  195. White, J., Matlin, K., and Helenius, A., 1981, Cell fusion by Semliki Forest, influenza and vesicular stomatitis virus, J. Cell Biol. 89: 674Google Scholar
  196. Yamamoto, S., and Kabuta, H., 1976, Genetic analysis of polykaryocytosis by herpes simplex virus. II. Recombination between viruses with non-fusing ability and fusing ability, Kurume Med. J. 23: 209Google Scholar
  197. Yamamoto, S., and Kabuta, H., 1977, Genetic analysis of polykaryocytosis by herpes simplex virus. III. Complementation and recombination between non-fusing mutants and con-struction of a linkage map with regard to the fusion function, Kurume Med. J. 24: 163Google Scholar
  198. Yamamoto, S., Kabuta, H., and Suenaga, Y., 1972, Mutants of herpes simplex virus. II. IDU- resistant mutants and a preliminary experiment on genetic recombination, Kurume Med. J. 19: 237Google Scholar
  199. Yamamoto, S., Kabuta, H., Imamoto, M., and Matsumoto, H., 1975, Genetic analysis of polykaryocytosis by herpes simplex virus. I. Experiments using recombinants from intertypic cross, Kurume Med. J. 22: 71Google Scholar
  200. Yasuda, J., and Milgrom, F., 1968, Hemadsorption by herpes simplex virus infected cell cultures, Int. Arch. Allergy 33: 151Google Scholar
  201. Yoshimura, A., Kuroda, K., Kawasaki, K., Yamashina, S., Maeda, T., and Ohnishi, S.-I., 1982, Infectious cell entry of influenza virus, J. Virol. 43: 284Google Scholar
  202. Zezulak, K. M., and Spear, P. G., 1983, Characterization of a herpes simplex virus type 2 75,000-molecular-weight glycoprotein antigenically related to herpes simplex virus type 1 glycoprotein C, J. Virol. 47: 553Google Scholar
  203. Zezulak, K. M., and Spear, P. G., 1984a, Limited proteolysis of herpes simplex vims glycoproteins that occurs during their extraction from Vero cells, J. Virol. 50: 258Google Scholar
  204. Zezulak, K. M., and Spear, P. G., 1984b, Mapping of the stmctural gene for the herpes simplex vims type 2 counterpart of herpes simplex vims type 1 glycoprotein C and identification of a type 2 mutant which does not express this glycoprotein, J. Virol. 49: 741Google Scholar
  205. Zweig, M., Showalter, S. D., Bladen, S. V., Heilman, C. J., Jr., and Hampar, B., 1983, Herpes simplex vims type 2 glycoprotein gF and type 1 glycoprotein gC have related antigenic determinants, J. Virol. 47: 185Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Patricia G. Spear
    • 1
  1. 1.Department of Molecular Genetics and Cell BiologyThe University of ChicagoChicagoUSA

Personalised recommendations