Calcification of Cardiac Valve Bioprostheses

Host and Implant Factors
  • Robert J. Levy
  • Frederick J. Schoen
  • Susan L. Howard
  • Judith T. Levy
  • Lauren Oshry
  • Marguerite Hawley


Glutaraldehyde-preserved stent-mounted porcine aortic valve bioprostheses are widely used in the surgical management of valvular heart disease [3,13,16,17]. Since 1971, several hundred thousand have been implanted in patients undergoing cardiac valve replacement. In most cases, bioprostheses offer the distinct advantages of freedom from chronic anticoagulation and favorable hemodynamic performance. However, calcification of bioprostheses is frequent after long-term function [16,17]. Mineral deposits often lead to clinically significant valvar dysfunction, which usually necessitates reoperation, but is occasionally fatal.


Bioprosthetic Valve Bioprosthetic Heart Valve Porcine Aortic Valve Pathological Calcification Cardiac Valve Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnhardt, G. R.; Jones, M.; Ishihara, T.; Rose, D.; Chavez, A. M.; Ferrans, V. J. Degeneration and calcification of bioprosthetic cardiac valvesAm. J. Pathol 106: 136–139, 1982.Google Scholar
  2. 2.
    Bowes, J. H.; Carter, C. W. The interaction of aldehydes with collagenBiochim, Biophys. Acta 168: 341–352, 1968.Google Scholar
  3. 3.
    Carpentier, A.; Lemaigre, G.; Robert, L.; Carpentier, S.; DuBost, C. Biological factors affecting long term results of valvular heterograftsJ. Thorac. Cardiovasc. Surg 58: 467–483, 1969.PubMedGoogle Scholar
  4. 4.
    DeLuca, H. F.; Schnoes, H. K. Metabolism and mechanism of action of vitamin D. Annu. Rev. Biochem 45: 631–666, 1977.CrossRefGoogle Scholar
  5. 5.
    Ferrans, V. J.; Boyce, S. W.; Billingham, M. E.; Jones, M.; Ishihara, T.; Roberts, W. C. Calcific deposits in porcine bioprostheses: Structure and pathogenesisAm. J. Cardiol 46: 721–734, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Fishbein, M.; Levy, R. J.; Nashef, A.; Ferrans, V. J.; Dearden, L. C.; Goodman, A. P.; Carpentier, A. Calcification of cardiac valve bioprostheses: Histologic, ultrastructural, and biochemical studies in a subcutaneous implantation model systemJ. Thorac. Cardiovasc. Surg 83: 602–609, 1982.PubMedGoogle Scholar
  7. 7.
    Hauschka, P. V.; Lian, J. B.; Gallop, P. M. Direct identification of the calcium binding amino acid, 7- carboxyglutamate, in mineralized tissueProc. Natl. Acad. Sci. USA 72: 3925–3929, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Levy, R. J.; Gundberg, C.; Scheinman, R. The identification of the vitamin K-dependent bone protein, osteocalcin as one of the 7-carboxyglutamic acid containing proteins present in calcified atherosclerotic plaque and mineralized heart valvesAtherosclerosis 46: 49–56, 1983.PubMedCrossRefGoogle Scholar
  9. 9.
    Levy, R. J.; Schoen. F. J.; Howard, S. L. Calcification of porcine bioprosthetic aortic valve leaflets is not mediated by immunological processesAm. J. Cardiol 52: 829–831, 1983.CrossRefGoogle Scholar
  10. 10.
    Levy, R. J.; Schoen, F. J.; Levy, J. T.; Nelson, A. C.; Howard, S. L.; Oshry, L. J. Biological determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in ratsAm. J. Pathol 113: 143–155, 1983.PubMedGoogle Scholar
  11. 11.
    Levy, R. J.; Zenker, J. A.; Bernhard, W. F. Porcine bioprosthetic valve calcification in bovine left ventricle to aorta shunts: Studies of the deposition of vitamin K-dependent proteinsAnn. Thorac. Surg 36: 187–192, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Levy, R. J.; Zenker, J. A.; Lian, J. B. Vitamin K-dependent calcium binding proteins in aortic valve calcificationJ. Clin. Invest 65: 563–566, 1980.CrossRefGoogle Scholar
  13. 13.
    Oyer, P. E.; Miller, D. C.; Stinson, E. B.; Reitz, B. A.; Moreno-Carbral, R. J.; Shumway, N. E. Clinical durability of the Hancock porcine bioprosthetic valveJ. Thorac. Cardiovasc. Surg 82: 127–137, 1980.Google Scholar
  14. 14.
    Price, P. A.; Williamson, M. K.; Haba T.; Dell, R. B.; and Jee, W. S. S. Excessive mineralization with growth plate closure in rats on chronic warfarin treatmentProc. Natl. Acad. Sci. USA 79: 7734–7738, 1982.PubMedCrossRefGoogle Scholar
  15. 15.
    Round, J. M. Plasma calcium, magnesium, phosphorus, and alkaline phosphtase in normal British school childrenBr. Med. J 3: 137–140, 1972.Google Scholar
  16. 16.
    Sanders, S. P.; Levy, R. J.; Freed, M. D.; Norwood, W. I.; Castaneda, A. R. Use of Hancock porcine xenografts in children and adolescentsAm. J. Cardiol 46: 429–438, 1980.PubMedCrossRefGoogle Scholar
  17. 17.
    Schoen, F. J.; Collins, J. J.; Cohn, L. H. Long-term failure rate and morphologic correlations in porcine bioprosthetic heart valvesAm. J. Cardiol 51: 957–964, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Robert J. Levy
    • 1
    • 2
  • Frederick J. Schoen
    • 3
  • Susan L. Howard
    • 4
  • Judith T. Levy
    • 5
  • Lauren Oshry
    • 5
  • Marguerite Hawley
    • 4
  1. 1.Department of Cardiology and Laboratory of Human BiochemistryChildren’s Hospital Medical CenterBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA
  3. 3.Department of PathologyBrigham and Women’s HospitalBostonUSA
  4. 4.Department of Cardiology and Laboratory of Human BiochemistryChildren’s Hospital Medical CenterBostonUSA
  5. 5.Department of ChemistryWellesley CollegeWellesleyUSA

Personalised recommendations