Similarities and Differences in the Response of Animals and Man to Factors Affecting Calcium Needs

  • H. H. Draper


Evidence accumulated over the past 35 years indicating that there are various hormonal, nutritional, genetic, and occupational factors which influence aging osteopenia and the development of osteoporotic bone disease in humans has prompted a search for animal models which might be useful in the study of specific predisposing factors. Aging bone loss in animals has been systematically studied only in recent years and there is still a paucity of information regarding the histological changes involved. There is no known animal condition which faithfully mimics human osteoporosis, but there are animal models which are useful in the study of some factors, such as nutrition and exercise, which influence certain aspects of the disease [22].


Bone Loss Calcium Intake Urinary Calcium Phosphorus Intake Acid Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, R. R.; Draper, H. H.; Tzeng, D. Y. M.; Shin, H. K.; Schmidt, G. R. Physiological responses of human adults to foods containing phosphate additives. J. Nutr. 107: 42–50, 1977.PubMedGoogle Scholar
  2. 2.
    Bell, R. R.; Tzeng, D. Y. M.; Draper, H. H. Long-term effects of calcium, phosphorus and forced exercise on the bones of mature mice. J. Nutr. 110: 1161–1168, 1980.PubMedGoogle Scholar
  3. 3.
    Bernstein, D.; Sadowski, N.; Hegsted, D. M.; Guri, D.; Stare. F. J. Prevalence of osteoporosis in high and low fluoride areas in North Dakota. J. Am. Med. Assoc. 198: 499–504, 1966.Google Scholar
  4. 4.
    Bowden, D. M.; Teets, C.; Witkin, J.; Young, D. M. Long bone calcification and morphology. In: Aging in Nonhuman Primates, D. M. Bowden, ed., Princeton, N.J., Van Nostrand-Reinhold, 1979, pp. 335–347.Google Scholar
  5. 5.
    Burnell, J. M.; Baylink, D. J.; Chestnut, C. H.; Mathews, M. W.; Teubner, E. J. Bone matrix and mineral abnormalities in postmenopausal osteoporosis. Metabolism 31: 1113–1119, 1982.PubMedCrossRefGoogle Scholar
  6. 6.
    Draper, H. H.; Sie, T. L.; Bergan, J. G. Osteoporosis in aging rats induced by high phosphorus diets. J. Nutr. 102: 1133–1142, 1972.PubMedGoogle Scholar
  7. 7.
    Garn, S. M.; Rohmann, C. G.; Wagner, B. Bone loss as a general phenomenon in man. Fed. Proc. 26: 1729–1736, 1967.PubMedGoogle Scholar
  8. 8.
    Heaney, R. P.; Gallagher, J. C.; Johnston, C. C.; Neer, R.; Parfitt, A. M.; Whedon, G. D. Calcium nutrition and bone health in the elderly. Am. J. Clin. Nutr. 36: 986–1013, 1982.PubMedGoogle Scholar
  9. 9.
    Hegsted, D. M.; Moscosco, I.; Collazos, C. Study of minimum calcium requirements of adult men. J. Nutr. 46: 181–201, 1981.CrossRefGoogle Scholar
  10. 10.
    Hegsted, M.; Schuette. S. A.; Zemel. M. B.; Linkswiler, H. M. Urinary calcium and calcium balance in young men as affected by level of protein and phosphorus intake. J. Nutr. 111: 553–563, 1981.Google Scholar
  11. 11.
    Henry, K. M.; Kon, S. K. The relationship between calcium retention and body stores of calcium in the rat: Effect of age and vitamin D. Br. J. Nutr. 7: 147–159, 1953.CrossRefGoogle Scholar
  12. 12.
    Hironaka, R.; Draper, H. H.; Kastelic, J. Physiological aspects of aging. III. The influence of aging on calcium metabolism in rats. J. Nutr. 71: 356–360, 1960.Google Scholar
  13. 13.
    Jee, W. S. S.; Kimmel, D. B.; Hashimoto, E. G.; Dell, R. B.; Woodbury, L. A. Quantitative studies of beagle lumbar vertebral bodies. In: Bone Morphology, Z. F. G. Jaworski, ed., Ottawa, University of Ottawa Press, 1976, pp. 110–117.Google Scholar
  14. 14.
    Jowsey, J.; Gershon-Cohen, J. Effect of dietary calcium levels on production and reversal of experimental osteoporosis in cats. Proc. Soc. Exp. Biol. Med. 116: 437–441, 1964.Google Scholar
  15. 15.
    Jowsey, J.; Reiss, E.; Canterbury, J. M. Long-term effects of high phosphate intake on parathyroid hormone levels and bone metabolism. Acta Orthop. Scand. 45: 801–808, 1974.CrossRefGoogle Scholar
  16. 16.
    Krishnarao, G. V. G.; Draper, H. H. Age-related changes in the bones of the adult mice. J. Gerontol. 24: 149–151, 1969.Google Scholar
  17. 17.
    Krishnarao, G. V. G.; Draper, H. H. Influence of dietary phosphate on bone resorption in senescent mice. J. Nutr. 102: 1143–1146, 1972.Google Scholar
  18. 18.
    Krook, L.; Lutwak, L.; Henrikson, P. A.; Kallfetz, F.; Hirsch, C.; Romanus, B.; Belanger, L. F.; Marier, J. R.; Sheffy, B. E. Reversibility of nutritional osteoporosis: Physicochemical data on bones from an experimental study in dogs. J. Nutr. 101: 233–246, 1971.Google Scholar
  19. 19.
    Malm, O. J. Adaptation to alterations in calcium intake. In: The Transfer of Calcium and Strontium across Biological Membranes, R. H. Wasserman, ed., New York, Academic Press, 1963, pp. 143–173.Google Scholar
  20. 20.
    Matkovic, V.; Kostial, K.; Simonovic, I.; Buzina, R.; Broderec, A.; Nordin, B. E. C. Bone status and fracture rates in two regions of Yugoslavia. Am. J. Clin. Nutr. 32: 540–549, 1979.Google Scholar
  21. 21.
    Mazess, R. B. On aging bone loss. Clin. Orthop. Relat. Res. 165: 239–252, 1982.Google Scholar
  22. 22.
    National Research Council. Committee on Animal Models for Research on Aging, Washington, D.C., National Academy Press, 1981.Google Scholar
  23. 23.
    Shah, B. G.; Krishnarao. G. V. G.; Draper, H. H. The relationship of calcium and phosphorus nutrition during adult life and osteoporosis in aged mice. J. Nutr. 92: 30–42, 1967.Google Scholar
  24. 24.
    Siu, G. M.; Hadley, M.; Draper, H. H. Self-regulation of phosphate intake by growing rats. J. Nutr. 111: 1681–1685, 1981.Google Scholar
  25. 25.
    Spencer, H.; Kramer, L.; Osis, D.; Norris, C. Effect of phosphorus on the absorption of calcium and on calcium balance in man. J. Nutr. 108: 447–457, 1978.Google Scholar
  26. 26.
    Spencer, H.; Kramer, L.; Osis, D.; Norris. C. Effect of a high protein (meat) diet on calcium balance in man. Am. J. Clin. Nutr. 31: 2167–2180, 1978.Google Scholar
  27. 27.
    Upton, P. K.; L’Estrange, J. L. Effects of chronic hydrochloric and lactic acid administrations on food intake, blood acid-base balance and bone composition in the rat. Q. J. Exp. Physiol. 62: 223–235, 1977.Google Scholar
  28. 28.
    Whiting, S. J.; Draper, H. H. Role of sulfate in the calciuria of high protein diets. J. Nutr. 110: 212–222, 1980.Google Scholar
  29. 29.
    Whiting, S. J.; Draper, H. H. Effect of chronic high protein feeding on bone composition in the adult rat. J. Nutr. 111: 178–183, 1981.Google Scholar
  30. 30.
    Wilkinson, R. Absorption of calcium, phosphorus and magnesium. In: Calcium, Phosphate and Magnesium Metabolism, B. E. C. Nordin, ed., Edinburgh, Churchill Livingstone, 1976, pp. 36–112.Google Scholar
  31. 31.
    Zemel, M. B.; Linkswiler, H. M. Calcium metabolism in the young adult male as affected by level and form of phosphorus intake and level of calcium intake. J. Nutr. 111: 315–324, 1981.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • H. H. Draper
    • 1
  1. 1.Department of Nutrition, College of Biological ScienceUniversity of GuelphGuelphCanada

Personalised recommendations