Routes of Calcium Flux in Cardiac Sarcoplasmic Reticulum

  • Joseph J. Feher

Abstract

Net release of Ca2+ from the sarcoplasmic reticulum (SR) plays an important role in coupling excitation to contraction in cardiac muscle cells, and the uptake of Ca2+ by SR plays a major role in effecting relaxation of the contractile apparatus [9,20,26]. There are several possible routes of Ca2 + influx and efflux in SR that could account for the net uptake and release of Ca2+. These putative pathways include passive diffusion, pump-mediated Ca2+ influx and efflux, carrier-mediated facilitated diffusion, and Ca2+ efflux through a gated channel. One goal of research in this field is to identify the routes of Ca2+ flux in SR and to determine their magnitude, time course, and roles in physiological regulation of Ca2+ flux. In this presentation, the routes of Ca2+ flux in SR vesicles isolated from dog hearts are examined. The results suggest that Ca2+ fluxes in cardiac SR occur through only three routes: (1) forward pump-mediated Ca2+ influx; (2) reverse pump-mediated Ca2+ efflux; and (3) passive efflux.

Keywords

Permeability Hydrolysis Crystallization Sucrose Adenosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman,M. C. Energy coupling and uncoupling of active calcium transport by sarcoplasmic reticulumBiochim. Biophys. Acta 694: 95–121, 1982.PubMedGoogle Scholar
  2. 2.
    Chevallier, J.; Bonnet, J.-P.; Galante, M.; Tenu, J.-P.; Gulik-Krzywicki, T. Functional and structural heterogeneity of sarcoplasmic reticulum preparationsBiol. Cell 30: 103–110, 1977.Google Scholar
  3. 3.
    Deamer, D. W.; Baskin, R. J. ATP synthesis in sarcoplasmic reticulumArch. Biochem. Biophys 153: 47–54, 1972.PubMedCrossRefGoogle Scholar
  4. 4.
    Dunnet, J.; Nayler, W. G. Effect of pH on calcium accumulation and release by isolated fragments of cardiac and skeletal muscle sarcoplasmic reticulumArch. Biochem. Biophys 198:434–438, 1979.CrossRefGoogle Scholar
  5. 5.
    Ebashi, S.; Lipmann, F. Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscleJ. Cell Biol 14: 389–400, 1962.PubMedCrossRefGoogle Scholar
  6. 6.
    Entman, M. L.; Van Winkle, W. B.; Bornet, E.; Tate, C. Spontaneous calcium release from sarcoplasmic reticulum: A re-examinationBiochim. Biophys. Acta 551: 382–388, 1979.PubMedGoogle Scholar
  7. 7.
    Fabiato, A. Calcium release in skinned cardiac cells: Variations with species, tissues and developmentFed. Proc 41: 2238–2244, 1982.PubMedGoogle Scholar
  8. 8.
    Fabiato, A. Fluorescence and differential light absorption recordings with calcium probes and potential- sensitive dyes in skinned cardiac cellsCan. J. Physiol. Pharmacol 60: 556–567, 1982.PubMedCrossRefGoogle Scholar
  9. 9.
    Fabiato, A.; Fabiato, F. Calcium and cardiac excitation-contraction couplingAnnu. Rev. Physiol 41: 473–484, 1979.PubMedCrossRefGoogle Scholar
  10. 10.
    Feher, J. J.; Briggs, F. N. The effect of calcium oxalate crystallization kinetics on the kinetics of calcium uptake and calcium ATPase activity of sarcoplasmic reticulum vesiclesCell Calcium 1: 105–118, 1980.CrossRefGoogle Scholar
  11. 11.
    Feher, J. J.; Briggs, F. N. The effect of calcium load on the calcium permeability of sarcoplasmic reticulumJ. Biol. Chem 257: 10191–10199, 1982.PubMedGoogle Scholar
  12. 12.
    Feher, J. J.; Briggs, F. N. Determinants of calcium loading at steady state in sarcoplasmic reticulumBiochim. Biophys. Acta 727: 389–402, 1983.PubMedCrossRefGoogle Scholar
  13. 13.
    Friedman, Z.; Makinose, M. Phosphorylation of skeletal muscle microsomes by acetyl phosphateFEBS Lett 11: 69–72, 1970.PubMedCrossRefGoogle Scholar
  14. 14.
    Guimaraes-Motta, H.; DeMeis, L. Pathway for ATP synthesis by sarcoplasmic reticulum ATPaseArch. Biochem. Biophys 203: 395–403, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Hasselbach, W.; Makinose, M. ATP and active transportBiochem. Biophys. Res. Commun 7: 132–136, 1962.PubMedCrossRefGoogle Scholar
  16. 16.
    Hill, T. LFree Energy Transduction in Biology, New York, Academic Press, 1977.Google Scholar
  17. 17.
    Inesi, G.; Kurzmack, M.; Kosk-Kosicka, D.; Lewis, D.; Scofano, H.; Guimaraes-Motta, H. Equilibrium and kinetic studies of calcium transport and ATPase activity in sarcoplasmic reticulumZNaturforsch. Teil C 37: 685–691, 1982.Google Scholar
  18. 18.
    Jones, L. R.; Besch, H. R. Calcium handling by cardiac sarcoplasmic reticulumTex. Rep. Biol. Med 39: 19–35, 1979.PubMedGoogle Scholar
  19. 19.
    Jones, L. R.; Besch, H. R.; Sutko, J. L.; Willerson, J. T. Ryanodine-induced stimulation of net Ca uptake by cardiac sarcoplasmic reticulum vesiclesJ. Pharmacol. Exp. Ther 209: 48–55, 1979.PubMedGoogle Scholar
  20. 20.
    Levitsky, D. O.; Benevolensky, D. S.; Levchenko, T. S.; Smirnov, V. N.; Chazov, E. I. Calcium-binding rate and capacity of cardiac sarcoplasmic reticulumJ. Mol. Cell. Cardiol 13: 785–796, 1981.PubMedCrossRefGoogle Scholar
  21. 21.
    Makinose, M.; Hasselbach, W. ATP synthesis by the reverse of the sarcoplasmic calcium pumpFEBS Lett 12: 271–272, 1971.PubMedCrossRefGoogle Scholar
  22. 22.
    Martonosi, A.; Feretos, R. Sarcoplasmic reticulum. I. The uptake of Ca by sarcoplasmic reticulum fragmentsJ. Biol. Chem 239: 648–658, 1964.PubMedGoogle Scholar
  23. 23.
    Penpargkul, S. Effects of adenine nucleotides on calcium binding by rat heart sarcoplasmic reticulumCardiovasc. Res 13: 243–253, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Pucell, A.; Martonosi, A. Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca transportJ. Biol. Chem 246: 3389–3397, 1971.PubMedGoogle Scholar
  25. 25.
    Ronzani, N.; Migala, A.; Hasselbach, W. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranesEur. J. Biochem 101: 593–606, 1979.PubMedCrossRefGoogle Scholar
  26. 26.
    Solaro, J.; Briggs, F. N. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscleCirc. Res 34: 531–540, 1974.PubMedGoogle Scholar
  27. 27.
    Stein, W. D. An algorithm for writing down flux equations for carrier kinetics, and its application to co- transportJ. Theor. Biol 62: 467–478, 1976.PubMedCrossRefGoogle Scholar
  28. 28.
    Suko, J.; Hasselbach, W. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphataseEur. J. Biochem 64: 123–130, 1976.PubMedCrossRefGoogle Scholar
  29. 29.
    Suko, J.; Hellman, G.; Winkler, F. The reversal of the calcium pump of cardiac sarcoplasmic reticulumBasic Res. Cardiol 72: 147–152, 1977.PubMedCrossRefGoogle Scholar
  30. 30.
    Takakuwa, Y.; Kanazawa, T. Reaction mechanism of (Ca,Mg)-ATPase of sarcoplasmic reticulum vesiclesJ. Biol. Chem 256: 2696–2700, 1981.PubMedGoogle Scholar
  31. 31.
    Takenaka, H.; Adler, P. N.; Katz, A. M. Calcium fluxes across the membrane of sarcoplasmic reticulum vesiclesJ. Biol. Chem 257: 12649–12656, 1982.PubMedGoogle Scholar
  32. 32.
    Verjovski-Almeida, S.; Kurzmack, M.; Inesi, G. Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPaseBiochemistry 17: 5006–5013, 1978.PubMedCrossRefGoogle Scholar
  33. 33.
    Waas, W.; Hasselbach, W. Interference of nucleoside diphosphates and inorganic phosphate with nucleoside triphosphate-dependent calcium fluxes and calcium-dependent nucleoside-triphosphate hydrolysis in membranes of sarcoplasmic reticulum vesiclesEur. J. Biochem 116: 601–608, 1981.PubMedCrossRefGoogle Scholar
  34. 34.
    Winkler, F.; Suko, J. Phosphorylation of the calcium transport adenosine triphosphatase of cardiac sarcoplasmic reticulum by orthophosphateEur. J. Biochem 77: 611–619, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Joseph J. Feher
    • 1
  1. 1.Department of Physiology and BiophysicsMedical College of VirginiaRichmondUSA

Personalised recommendations