Skip to main content

Intracellular Calcium as a Second Messenger

What’s so Special about Calcium?

  • Chapter

Abstract

Intracellular calcium serves as a second messenger for the control of a variety of cell functions, including secretion, contraction, phototransduction, cell division and differentiation, and potassium and sodium permeability. Since many aspects of calcium metabolism are strikingly similar in very diverse cell types, we will focus on certain general features of calcium metabolism that are applicable to a large variety of cells. Our objective is to gain some understanding of why calcium is such a good second messenger.

Keywords

  • Calcium Binding Protein
  • Anionic Site
  • Electrochemical Gradient
  • Smooth Endoplasmic Reticulum
  • Hydroxyl Oxygen

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-2377-8_3
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4613-2377-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashley, C. C.; Campbell, A. K. (eds.) Detection and Measurement of Free Ca 2 + in Cells, Amsterdam, Elsevier/ North-Holland, 1979.

    Google Scholar 

  2. Atwood, H. L.; Charlton, M. P.; Thompson, C. S. Neuromuscular transmission in crustaceans is enhanced by a sodium ionophore, monensin, and by prolonged stimulation. J. Physiol. (London) 335: 179–195, 1983.

    CAS  Google Scholar 

  3. Baker, P. F.; Crawford, A. C. Mobility and transport of magnesium in squid giant axons. J. Physiol. (London) 227: 855–874, 1972.

    CAS  Google Scholar 

  4. Becker, G. L.; Fiskum, G.; Lehninger, A. L. Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum. J. Biol. Chem. 255: 9009–9012, 1980.

    PubMed  CAS  Google Scholar 

  5. Blaustein, M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev. Physiol. Biochem. Pharmacol. 70: 32–82, 1974.

    Google Scholar 

  6. Blaustein, M. P. The energetics and kinetics of sodium-calcium exchange in barnacle muscles, squid axons and mammalian heart: The role of ATP. In: Electrogenic Transport: Fundamental Principles and Physiological Implications, M. P. Blaustein and M. Lieberman, eds., New York, Raven Press, 1983, pp. 129–147.

    Google Scholar 

  7. Blaustein, M. P.; Hodgkin, A. L. The effect of cyanide on the efflux of calcium from squid axons. J. Physiol. (London) 200: 497 - 527, 1969.

    CAS  Google Scholar 

  8. Blaustein, M. P.; Nachshen, D. A.; Drapeau, P. Excitation-secretion coupling: The role of calcium. In: Chemical Neurotransmission75 Years, L. Stjärne, P. Hedquist, A. Wennmalm, and H. Lagerkrantz, eds., New York, Academic Press, 1981, pp. 125–138.

    Google Scholar 

  9. Blaustein, M. P.; Nelson, M. T. Sodium-calcium exchange: Its role in the regulation of cell calcium. In: Membrane Transport of Calcium, E. Carafoli, ed., New York, Academic Press, 1982, pp. 217–236.

    Google Scholar 

  10. Blaustein, M. P.; Rasgado-Flores, H. The control of cytoplasmic free calcium in presynaptic nerve terminals. In: Calcium and Phosphate Transport across Biomembranes, F. Bronner and M. Peterlik, eds., New York, Academic Press, 1981, pp. 53–58.

    Google Scholar 

  11. Blaustein, M. P.; Ratzlaff, R. W.; Kendrick, N. C.; Schweitzer, E. S. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J. Gen. Physiol 72: 15–41, 1978.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Blaustein, M. P.; Ratzlaff, R. W.; Schweitzer, E. S. Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism. J. Gen. Physiol 72: 43–66, 1978.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Blinks, J. R.; Wier, W. G.; Hess, P.; Prendergast, F. G. Measurement of Ca2+ concentrations in living cells. Prog. Biophys. Mol. Biol 40: 1–114, 1982.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Burgess, G. M.; McKinney, J. S.; Fabiato, A.; Leslie, B. A.; Putney, J. W., Jr. Calcium fluxes in saponin- permeabilized hepatocytes. J. Biol Chem. 258: 15336–15345, 1983.

    PubMed  CAS  Google Scholar 

  15. Chan, S. Y.; Ochs, S.; Worth, R. M. The requirement for calcium ions and the effect of other ions on axoplasmic transport in mammalian nerve. J. Physiol (London) 301: 477–504, 1980.

    CAS  Google Scholar 

  16. Cheung, W. Y. Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27, 1980.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Colca, J. R.; McDonald, J. M.; Kotagal, N.; Patke, C.; Fink, C. J.; Greider, M. H.; Lacy, P. E.; McDaniel, M. L. Active calcium uptake by islet-cell endoplasmic reticulum. J. Biol Chem. 257: 7223–7228, 1982.

    PubMed  CAS  Google Scholar 

  18. Costantin, R. Activation in striated muscle. In: Handbook of Physiology, Section 1, The Nervous System, Volume 1, Cellular Biology of Neurons, Part I, E. Kandel, ed., Bethesda, American Physiological Society, 1975, pp. 215–259.

    Google Scholar 

  19. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 3rd ed., New York, Interscience, 1972, pp. 189 and 206.

    Google Scholar 

  20. DeLuca, H. F. Vitamin D metabolism and function. Arch. Intern. Med. 138: 836–847, 1978.

    PubMed  CAS  Google Scholar 

  21. Demaille, J. G. Calmodulin and calcium binding proteins: Evolutionary diversification of structure and function. In: Calcium and Cell Function, Volume II, W. Y. Cheung, ed., New York, Academic Press, 1982, pp. 111–144.

    Google Scholar 

  22. DeMeis, L.; Inesi, G. The transport of calcium by sarcoplasmic reticulum and various microsomal preparations. In: Membrane Transport of Calcium, E. Carafoli, ed., New York, Academic Press, 1982, pp. 141–186.

    Google Scholar 

  23. Diamond, J. M.; Wright, E. M. Biological membranes: The physical basis of ion and nonelectrolyte selectivity. Annu. Rev. Physiol 31: 581–646, 1969.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Drapeau, P.; Blaustein, M. P. Calcium and neurotransmitter release: What we know and don’t know. In: Trends in Autonomic Pharmacology, S. Kalsner, ed., Batimore, Urban, Schwarzenberg, 1982, pp. 117–130.

    Google Scholar 

  25. Drapeau, P.; Blaustein, M. P. Initial release of 3H-dopamine from rat striatal synaptosomes: Correlation with calcium entry. J. Neurosci. 3: 703–713, 1983.

    PubMed  CAS  Google Scholar 

  26. Eigen, M.; Winkler, R. Alkali ion carriers: Specificity, architecture, and mechanisms. Neurosci. Res. Prog. Bull 9: 330 - 338, 1971.

    CAS  Google Scholar 

  27. Eisenman, G. On the elementary atomic origin of equilibrium ion specificity. In: Membrane Transport and Metabolism, A. Kleinzeller and A. Kotyk, eds., New York, Academic Press, 1962, pp. 169–179.

    Google Scholar 

  28. Eisenman, G. Cation selective electrodes and their mode of operation. Biophys. J. (Suppl.) 259 - 323, 1962.

    Google Scholar 

  29. Hagiwara, S.; Byerly, L. Calcium channel. Annu. Rev. Neurosci. 4: 69–125, 1981.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Hammerschlag, R. The role of calcium in the initiation of fast axoplasmic transport. Fed. Proc. 39: 2809–2814, 1980.

    PubMed  CAS  Google Scholar 

  31. Hodgkin, A. L.; Keynes, R. D. Movements of labelled calcium in squid axons. J. Physiol. (London) 128: 28–60, 1957.

    Google Scholar 

  32. Hutson, S. M.; Pfeiffer, D. R.; Lardy, H. A. Effect of cations and anions on the steady state kinetics of energy- dependent Ca2+ transport in rat liver mitochondria. J. Biol. Chem. 251: 5251–5258, 1976.

    PubMed  CAS  Google Scholar 

  33. Katz, B. The Release of Neural Transmitter Substances, Springfield, 111., Thomas, 1968.

    Google Scholar 

  34. Katz, B.; Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (London) 195: 481–492, 1968.

    CAS  Google Scholar 

  35. Kendrick, N. C.; Ratzlaff, R. W.; Blaustein, M. P. Arenazo III as an indicator for ionized calcium in physiological salt solutions: Its use for determination of the CaATP dissociation constant. Anal. Biochem. 83: 433–450, 1977.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Kretsinger, R. H. Evolution of the informational role of calcium in eukaryotes. In: Calcium Binding Proteins and Calcium Function, R. Wasserman, R. Corradino, E. Carafoli, R. H. Kretsinger, D. MacLennan, and F. Siegel, eds., Amsterdam, Elsevier/North-Holland, 1977, pp. 63–72.

    Google Scholar 

  37. Lee, C. O.; Dagostino, M. Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers. Biophys. J. 40: 185–198, 1982.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Lee, C. O.; Vassalle, M. Modulation of intracellular Na + activity and cardiac force by norepinephrine and Ca2+. Am. J. Physiol. 244: C110 - C114, 1983.

    PubMed  CAS  Google Scholar 

  39. Lehninger, A. L. Mitochondria and calcium ion transport. Biochem. J. 119: 129–138, 1970.

    PubMed  CAS  Google Scholar 

  40. Llinas, R.; Steinberg, I. Z.; Walton, K. Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc. Natl. Acad. Sci. USA 73: 2918–2922, 1976.

    CrossRef  PubMed  CAS  Google Scholar 

  41. McGraw, C. F.; Nachshen, D. A.; Blaustein, M. P. Calcium movement and regulation in presynaptic nerve terminals. In: Calcium and Cell Function, W. Y. Cheung, ed., New York, Academic Press, 1982, pp. 81–110.

    Google Scholar 

  42. McGraw, C. F.; Somlyo, A. V.; Blaustein, M. P. Localization of calcium in presynaptic nerve terminals: An ultrastructural and electron microprobe analysis. J. Cell Biol. 85: 228–241, 1980.

    CrossRef  PubMed  CAS  Google Scholar 

  43. McLaughlin, S.; Eisenberg, M. Antibiotics and membrane biology. Annu. Rev. Biophys. Bioeng. 4: 335–366, 1975.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Means, A. R.; Dedman, J. R. Calmodulin—An intracellular calcium receptor. Nature (London) 285: 73–77, 1980.

    CrossRef  CAS  Google Scholar 

  45. Meech, R. W. Calcium-dependent potassium activation in nervous tissues. Annu. Rev. Biophys. Bioeng. 7: 1–18, 1978.

    CrossRef  PubMed  CAS  Google Scholar 

  46. Misler, S.; Hurlbut, W. P. Post-tetanic potentiation of acetylcholine release at the frog neuromuscular junction develops after stimulation in Ca2+ -free solutions. Proc. Natl. Acad. Sci. USA 80: 315–319, 1983.

    CrossRef  PubMed  CAS  Google Scholar 

  47. Morrissey, R. L.; Empson, R. N., Jr.; Zolock, D. T.; Bickle, D. D.; Bucci, T. J. Intestinal response to lα,25- dihydroxycholecalciferol. II. A timed study of the intracellular localization of calcium binding protein. Biochim. Biophys. Acta 538: 34–41, 1978.

    PubMed  CAS  Google Scholar 

  48. Nachshen, D. A. Selectivity of the Ca binding site in synaptosome Ca channels: Inhibition of Ca influx by multivalent metal cations. J. Gen Physiol. 83: 941–967, 1984.

    CrossRef  Google Scholar 

  49. Nachshen, D. A.; Blaustein, M. P. Some properties of potassium-stimulated calcium influx in presynaptic nerve endings. J. Gen. Physiol 76: 709–728, 1980.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Nachshen, D. A.; Blaustein, M. P. The influx of calcium, strontium and barium in presynaptic nerve endings. J. Gen. Physiol 79: 1065–1087, 1982.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Potter, J. D.; Johnson, J. D. Troponin. In: Calcium and Cell Function, Volume II, W. Y. Cheung, ed., New York, Academic Press, 1982, pp. 145–173.

    Google Scholar 

  52. Putney, J. W., Jr.; Weiss, S. J.; Leslie, B. A.; Marier, S. A. Is calcium the final mediator of exocytosis in the rat parotid gland? J. Pharmacol Exp. Ther. 203: 144–155, 1977.

    PubMed  CAS  Google Scholar 

  53. Rasmussen, H.; Fontaine, O.; Max, E. E.; Goodman, D. B. P. The effect of la-hydroxyvitamin D3 administration on calcium transport in chick intestine brush border membrane vesicles. J. Biol Chem. 254: 2993–2999, 1979.

    PubMed  CAS  Google Scholar 

  54. Reuter, H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature (London) 301: 569–574, 1983.

    CrossRef  CAS  Google Scholar 

  55. Rose, B.; Loewenstein, W. R. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin. J. Membr. Biol 28: 87–119, 1976.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Schweitzer, E. S.; Blaustein, M. P. Calcium buffering in presynaptic nerve terminals: Free calcium levels measured with arsenazo III. Biochim. Biophys. Acta. 600: 912–921, 1980.

    CrossRef  PubMed  CAS  Google Scholar 

  57. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. Acta Crystallogr. Sect. A 32: 751–767, 1976.

    CrossRef  Google Scholar 

  58. Sheu, S.-S.; Fozzard, H. A. Transmembrane Na + and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J. Gen. Physiol 80: 325–351, 1982.

    CrossRef  PubMed  CAS  Google Scholar 

  59. Somlyo, A. P.; Somlyo, A. V.; Shuman, H. Electron probe analysis of vascular smooth muscle: Composition of mitochondria, nuclei and cytoplasm. J. Cell Biol. 81: 316–335, 1979.

    CrossRef  PubMed  CAS  Google Scholar 

  60. Somlyo, A. V.; Gonzales-Serratos, H.; Shuman, H.; McClellan, G.; Somlyo, A. P. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron-probe study. J. Cell Biol. 90: 577–594, 1981.

    CrossRef  PubMed  CAS  Google Scholar 

  61. Somlyo, A. V.; Shuman, H.; Somlyo, A. P. Elemental distribution in striated muscle and effects of hyper-tonicity: Electron probe analysis of cryosectionsJ. Cell Biol 74: 828–857, 1977.

    Google Scholar 

  62. Spencer, R.; Charman, M.; Wilson, P. W.; Lawson, D. E. M. The relationship between vitamin D-stimulated calcium transport and intestinal calcium-binding protein in the chicken. Biochem. J. 170: 93–101, 1978.

    PubMed  CAS  Google Scholar 

  63. Taylor, A. Role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium and water absorption. In: Ion Transport by Epithelia, S. G. Schultz, ed., New York, Raven Press, 1981, pp. 233–259.

    Google Scholar 

  64. Taylor, A.; Windhager, E. E. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236: F505 - F512, 1979.

    PubMed  CAS  Google Scholar 

  65. Terman, B. I.; Gunter, T. E. Characterization of the submandibular gland microsomal calcium transport system. Biochim. Biophys. Acta 730: 151–160, 1983.

    CrossRef  PubMed  CAS  Google Scholar 

  66. Truesdell, A. H.; Christ, C. L. Glass electrodes for calcium and other divalent cations. In: Glass Electrodes for Hydrogen and Other Cations, G. Eisenman, ed., New York, Dekker, 1967, pp. 291–321.

    Google Scholar 

  67. Tsien, R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis and properties of prototype structures. Biochemistry 19: 2396–2404, 1980.

    CrossRef  PubMed  CAS  Google Scholar 

  68. Vinogradov, A.; Scarpa, A. The initial velocities of calcium uptake by rat liver mitochondria. J. Biol. Chem. 248: 5527–5531, 1973.

    PubMed  CAS  Google Scholar 

  69. Wasserman, R. H.; Fullmer, C. S. Vitamin D-induced calcium binding protein. In: Calcium and Cell Function, Volume II, W. Y. Cheung, ed., New York, Academic Press, 1982, pp. 175–216.

    Google Scholar 

  70. Wasserstrom, J. A.; Schwartz, D. J.; Fozzard, H. A. Relation between intracellular sodium and twitch tension in sheep cardiac Purkinje strands exposed to cardiac glycosides. Circ. Res. 52: 697–705, 1983.

    PubMed  CAS  Google Scholar 

  71. Weaver, D. C.; Barry, C. D.; McDaniel, M. L.; Marshall, G. R.; Lacy, P. E. Molecular requirements for recognition at a glucoreceptor for insulin release. Mol. Pharmacol. 16: 361–368, 1979.

    PubMed  CAS  Google Scholar 

  72. Williams, R. J. P. The biochemistry of sodium, potassium, magnesium and calcium. Q. Rev. Chem. Soc. 24: 331–365, 1970.

    CrossRef  CAS  Google Scholar 

  73. Wnuk, W.; Cox, J. A.; Stein, E. A. Paralbumins and other soluble high-affinity calcium binding proteins from muscle. In: Calcium and Cell Function, Volume II, W. Y. Cheung, ed., New York, Academic Press, 1982, pp. 243–278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Blaustein, M.P. (1985). Intracellular Calcium as a Second Messenger. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive