Skip to main content

Calcium and Transmitter Release Modulation by Adenosine Derivatives

  • Chapter
Book cover Calcium in Biological Systems

Abstract

The currently accepted scheme of evoked transmitter secretion may be summarized as follows (for recent reviews, see [44,46]):

(1) A wave of depolarization (the action potential) invades the nerve terminal and opens voltage-sensitive calcium channels. (2) Extracellular calcium, preequilibrated with the extracellular surface of the nerve terminal membrane, enters the nerve terminal down its concentration gradient through the open calcium channels. (3) Calcium, once near the internal face of the nerve membrane, causes synaptic vesicles with encapsulated neurotransmitter to fuse with the nerve terminal at specific releasing sites. (4) The transmitter contents of the fused vesicles are discharged into the synaptic cleft by exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasu, T.; Hirai, K.; Koketsu, K. Increase of acetylcholine receptor sensitivity by adenosine triphosphate: A novel action of ATP on ACh sensitivityBr. J. Pharmacol. 74: 505–507, 1981.

    PubMed  CAS  Google Scholar 

  2. Ariens, E. J. Receptors: From fiction to factTrends Pharmacol. Sci. 1: 11–15, 1979.

    Article  CAS  Google Scholar 

  3. Birnbaumer, L.; Iyengar, R. Coupling of receptors to adenylate cyclases. In: Cyclic Nucleotides I: Handbook of Experimental Pharmacology, J. A. Nathanson and J. E. Kebabian, eds., Berlin, Springer-Verlag, 1982, pp. 153–183.

    Google Scholar 

  4. Branisteanu, D. D.; Haulica. N. P.; Proca, B.; Nhue, B. G. Adenosine effects upon transmitter release parameters in the Mg2+ -paralyzed neuromuscular junction of the frogNaunyn-Schmiedebergs Arch. Phar- makol 308: 273–279, 1979.

    Article  CAS  Google Scholar 

  5. Burnstock, G. Past and current evidence for the purinergic nerve hypothesis. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, H. P. Baer and G. I. Drummond, eds., New York, Raven Press, 1979, pp. 3–32.

    Google Scholar 

  6. Van Calker, D.; Muller, M.; Hamprecht, B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cellsJ. Neurochem. 33: 999–1005, 1979.

    Article  PubMed  Google Scholar 

  7. Clarke, D. A.; Davoll, J., Phillips, F. S.; Brown, B. G. Enzymatic deamination and vasopressor effects of adenosine analoguesJ. Pharmacol. Exp. Ther. 106: 291–302, 1952.

    PubMed  CAS  Google Scholar 

  8. Del Castillo, J.; Katz, B. Quantal components of the end-plate potentialJ. Physiol. (London) 124: 560–573, 1954.

    Google Scholar 

  9. Dodge, F. A., Jr.; Rahamimoff, R. Cooperative action of Ca ions in transmitter release at the neuromuscular junctionJ. Physiol. (London) 193: 419–432, 1967.

    CAS  Google Scholar 

  10. Douglas, W. W.; Poisner, A. M. Stimulus-secretion coupling in a neurosecretory organ: The role of calcium in the release of vasopressin from the neurohypophysisJ. Physiol. (London) 172: 1–18, 1964.

    CAS  Google Scholar 

  11. Douglas, W. W.; Poisner, A. M. Calcium movements in the neurohypophysis of the rat and its relation to the release of vasopressinJ. Physiol. (London) 172: 19–30, 1964.

    CAS  Google Scholar 

  12. Drapeau, P.; Blaustein, M. P. Initial release of 3H-dopamine from rat striatal synaptosomes: Correlation with calcium entryJ. Neurosci. 3: 703–713, 1983.

    PubMed  CAS  Google Scholar 

  13. Dunwiddie, T. V.; Hoffer, B. J. The role of cyclic nucleotides in the nervous system. In: Cyclic Nucleotides II: Handbook of Experimental Pharmacology, J. E. Kebabian and J. A. Nathanson, eds., Berlin, Springer-Verlag, 1982, pp. 389–463.

    Google Scholar 

  14. Fredholm, B. B.; Hedqvist, P. Modulation of neurotransmission by purine nucleotides and nucleosidesBiochem. Pharmacol. 29: 1635–1643, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Ginsborg, B. L.; Hirst, G. D. S. The effect of adenosine on the release of the transmitter from the phrenic nerve of the ratJ. Physiol. (London) 224: 629–645, 1972.

    CAS  Google Scholar 

  16. Grupp, G.; Grupp, I. L.; Johnson, C. L.; Matlib, M. A.; Rouslin, W.; Schwartz, A.; Wallick, E. T.; Wang, T.; Wisler, P. Effect of RMI 12,330A, a new inhibitor of adenylate cyclase on myocardial function and subcellular activityBr. J. Pharmacol. 70: 429–442, 1980.

    PubMed  CAS  Google Scholar 

  17. Guellaen, G.; Mahu, J. L.; Mavier, P.; Berthelot, P.; Hanoune, J. RMI 12,330A, an inhibitor of adenylate cyclase in rat liverBiochim. Biophys. Acta 484: 465–475, 1977.

    PubMed  CAS  Google Scholar 

  18. Kharasch, E. D.; Mellow, A. M.; Silinsky, E. M. Intracellular magnesium does not antagonize calcium- dependent acetylcholine secretionJ. Physiol. (London) 314: 255–263, 1981.

    CAS  Google Scholar 

  19. Kuroda, Y. Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brainJ. Physiol (Paris) 74: 463–470, 1978.

    CAS  Google Scholar 

  20. Londos, C.; Cooper, D. M. F.; Wolff, J. Subclasses of external adenosine receptorsProc. Natl. Acad. Sci. USA 77: 2551–2554, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Londos, C.; Wolff, J. Two distinct adenosine sensitive sites on adenylate cyclaseProc. Natl. Acad. Sci. USA 74: 5482–5486, 1977.

    Article  PubMed  CAS  Google Scholar 

  22. de Lorenzo, R. J. Calmodulin in neurotransmitter release and synaptic functionFed. Proc. 41: 2265–2272, 1982.

    Google Scholar 

  23. McLachlan, E. M.; Martin, A. R. Non-linear summation of end-plate potentials in the frog and mouseJ. Physiol. (London) 311: 307–324, 1981.

    CAS  Google Scholar 

  24. Meiri, U.; Rahamimoff, R. Activation of transmitter release by strontium and calcium ions at the neuromuscular junctionJ. Physiol. (London) 215: 709–726, 1971.

    CAS  Google Scholar 

  25. Mellow, A. M.; Perry, B. D.; Silinsky, E. M. Effects of calcium and strontium in the process of acetylcholine release from motor nerve endingsJ. Physiol. (London) 328: 547–562, 1982.

    CAS  Google Scholar 

  26. Miyamoto, M. D.; Breckenridge, B. M. A cyclic adenosine monophosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junctionJ. Gen. Physiol. 63: 609–624, 1974.

    Article  CAS  Google Scholar 

  27. Pagano, R. E.; Weinstein, J. N. Interactions of liposomes with mammalian cellsAnnu. Rev. Biophys. Bioeng. 7: 435–468, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Phillis, J. W.; Wu, P. H. Adenosine and adenosine triphosphate as neurotransmitter/neuromodulator in the brain: The evidence is mounting. In: Trends in Autonomic Pharmacology, Volume 2, S. Kalsner, ed., Baltimore, Urban Schwarzenberg, 1982, pp. 237–261.

    Google Scholar 

  29. Rahamimoff, R.; Meiri, H.; Erulkar, S. D.; Barenholz, Y. Changes in transmitter release induced by ion- containing liposomesProc. Natl. Acad. Sci. USA 75: 5214–5216, 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Rail, T. W. Central nervous system stimulants: The xanthines. In: The Pharmacological Basis of Therapeutics, A. G. Gilman, L. S. Goodman, and A. Gilman, eds., New York, Macmillan Co., 1980, pp. 592–607.

    Google Scholar 

  31. Rasenick, M. M.; Stein, P. J.; Bitensky, M. W. The regulatory subunit of adenylate cyclase interacts with cytoskeletal componentsNature (London) 294: 560–562, 1981.

    Article  CAS  Google Scholar 

  32. Ribeiro, J. A. Purinergic modulation of transmitter releaseJ. Theor. Biol. 80: 259–270, 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Ribeiro, J. A.; Dominguez, M. L. Mechanisms of depression of neuromuscular transmission by ATP and adenosineJ. Physiol. (Paris) 74: 491–496, 1978.

    CAS  Google Scholar 

  34. Ribeiro, J. A.; Dominguez, M. J.; Goncalves, M. L. Purine effects at the neuromuscular junction and their modification by theophylline, imidazole and verapamilArch. Int. Pharmacodyn. Ther. 238: 206–219, 1979.

    PubMed  CAS  Google Scholar 

  35. Ribeiro, J. A.; Sa-Almeida, A. M.; Namorado, J. M. Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassiumBiochem. Pharmacol. 28: 1297–1300, 1979.

    Article  PubMed  CAS  Google Scholar 

  36. Ribeiro, J. A.; Walker, J. The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctionsBr. J. Pharmacol. 54: 213–218, 1975.

    PubMed  CAS  Google Scholar 

  37. Roch, P.; Salamin, A. Adenosine-promoted accumulation of cyclic AMP in rabbit vagus nerve. Experientia 32: 1419–1421, 1976.

    Article  PubMed  CAS  Google Scholar 

  38. Schulman, H. Calcium-dependent protein phosphorylation. In: Cyclic Nucleotides I: Handbook of Experimental Pharmacology, J. A. Nathanson and J. W. Kebabian, eds., Berlin, Springer-Verlag, 1982, pp. 425–478.

    Google Scholar 

  39. Silinsky, E. M. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminalsJ. Physiol. (London) 247: 145–162, 1975.

    CAS  Google Scholar 

  40. Silinsky, E. M. Can barium support the release of acetylcholine by nerve impulses? Br. J. Pharmacol 59:215– 217, 1977.

    Google Scholar 

  41. Silinsky, E. M. On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulsesJ. Physiol. (London) 274: 157–171, 1978.

    CAS  Google Scholar 

  42. Silinsky, E. M. Evidence for specific adenosine receptors at cholinergic nerve endingsBr. J. Pharmacol. 71: 191–194, 1980.

    PubMed  CAS  Google Scholar 

  43. Silinsky, E. M. On the calcium receptor that mediates depolarization-secretion coupling at cholinergic motor nerve terminalsBr. J. Pharmacol. 73: 413–429, 1981.

    PubMed  CAS  Google Scholar 

  44. Silinsky, E. M. Properties of calcium receptors that initiate depolarization-secretion couplingFed. Proc. 41: 2172–2180, 1982.

    PubMed  CAS  Google Scholar 

  45. Silinsky, E. M. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endingsJ. Physiol. (London) 346: 243–256, 1984.

    CAS  Google Scholar 

  46. Silinsky, E. M. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endingsJ. Physiol. (London) 346: 243–256, 1984.

    CAS  Google Scholar 

  47. Silinsky, E. M.; Hubbard, J. I. Release of ATP from rat motor nerve terminalsNature (London) 243: 404–405, 1973.

    Article  CAS  Google Scholar 

  48. Silinsky, E. M.; Mellow, A. M. The relationship between strontium and other divalent cations in the process of transmitter release from cholinergic nerve endings. In: Handbook of Stable Strontium, S. Skoryna, ed., New York, Plenum Press, 1981, pp. 263–285.

    Google Scholar 

  49. Standaert, F. G.; Dretchen, K. L. Cyclic nucleotides and neuromuscular transmissionFed. Proc. 38: 2182–2192, 1979.

    Google Scholar 

  50. Stephenson, R. P. A modification of receptor theoryBr. J. Pharmacol. 11: 379–393, 1956.

    CAS  Google Scholar 

  51. Stephenson, R. P.; Barlow, R. B. Concepts of drug action, quantitative pharmacology and biological assay. In: A Companion to Medical Studies, R. Passmore and J. S. Robson, eds., Oxford, Blackwell, 1970, pp. 1–19.

    Google Scholar 

  52. Stone, T. W. Physiological roles for adenosine and adenosine 5’-triphosphate in the nervous systemNeuroscience 6: 523–555, 1981.

    Article  PubMed  CAS  Google Scholar 

  53. Zengel, J. E.; Magleby, K. L. Changes in miniature end-plate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+ and Sr2+ at the frog neuromuscular junctionJ. Gen. Physiol. 77: 503–529, 1981.

    Article  PubMed  CAS  Google Scholar 

  54. Zimmermann, H. Vesicle recycling and transmitter releaseNeuroscience 4: 1773–1804, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Silinsky, E.M. (1985). Calcium and Transmitter Release Modulation by Adenosine Derivatives. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics