Role of Calcium in Stimulus-Secretion Coupling in Bovine Adrenal Medullary Cells

  • N. Krishner
  • J. J. Corcoran
  • S. P. Wilson


The requirement of extracellular calcium for secretion of catecholamines from the adrenal medulla was first demonstrated by Douglas and Rubin in 1961 [10]. They proposed that acetylcholine stimulated secretion by promoting the influx of calcium into chromaffin cells, thus initiating intracellular events resulting in the release of adrenaline and noradrenaline. Evidence consistent with this hypothesis was obtained by Douglas and Poisner [9] who showed that perfused cat adrenal glands treated with acetylcholine retained more of a loading dose of 45Ca2+ than did untreated glands. Because of the limited experimental flexibility of the perfused gland system it was not possible to carry out a detailed analysis of calcium uptake, but continued studies of stimulus-secretion coupling provided evidence that entry of calcium into the cell was an early step in secretion [8]. With the advent of methods for maintaining primary cultures of adrenal medulla chromaffin cells, it became possible to determine directly the effects of stimulation on the entry of calcium as well as other ions into the cells. Several laboratories have undertaken such studies [20,23,28], and the essential features are described here.


Calcium Uptake Chromaffin Cell Adrenal Medulla Catecholamine Release Catecholamine Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amy, C. M.; Kirshner, N. Phosphorylation of adrenal medulla cell proteins in conjunction with stimulation of catecholamine secretionJ. Neurochem. 36: 847–854, 1981.PubMedCrossRefGoogle Scholar
  2. 2.
    Arqueros, L.; Daniels, A. J. Manganese as agonist and antagonist of calcium ions: Dual effect upon catecholamine release from adrenal medullaLife Sci 28: 1535–1540, 1981.PubMedCrossRefGoogle Scholar
  3. 3.
    Biales, B.; Dichter, M.; Tischler, A. Electrical excitability of cultured adrenal chromaffin cellsJ. Physiol. (London) 262: 743–753, 1976.Google Scholar
  4. 4.
    Chalfie, M.; Hoodley, D.; Pastan, S.; Perlman, R. L. Calcium uptake into rat pheochromocytoma cellsJ. Neurochem. 27: 1405–1409, 1976.PubMedCrossRefGoogle Scholar
  5. 5.
    Conn, P. M.; Kilpatrick, D.; Kirshner, N. Ionophoretic Ca2+ mobilization in rat gonadotropes and bovine adrenomedullary cellsCell Calcium 1: 29–133, 1980.Google Scholar
  6. 6.
    Corcoran, J. J.; Kirshner, N. Inhibition of calcium uptake, sodium uptake and catecholamine secretion by methoxyverapamil (D600) in primary cultures of adrenal medulla cellsJ. Neurochem. 40: 1106–1109, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Corcoran, J. J.; Kirshner, N. Effects of manganese and other divalent cations on calcium uptake and catecholamine secretion by primary cultures of bovine adrenal medullaCell Calcium 4: 127–137, 1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Douglas, W. W. Involvement of calcium in exocytosis and the exocytosis vesiculation sequenceBiochem. Soc. Symp.Google Scholar
  9. 9.
    Douglas, W. W.; Poisner, A. M. On the mode of action of acetylcholine in evoking adrenal medullary secretion: Increased uptake of calcium during the secretory responseJ. Physiol. (London) 162: 385–392, 1962.Google Scholar
  10. 10.
    Douglas, W. W.; Rubin, R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholineJ. Physiol. (London) 159: 40–57, 1961.Google Scholar
  11. 11.
    Douglas, W. W.; Rubin, R. P. The effects of alkaline earths and other divalent cations on adrenal medullary secretionJ. Physiol. (London) 175: 231–241, 1964.Google Scholar
  12. 12.
    Douglas, W. W.; Rubin, R. P. Stimulant action of barium on the adrenal medullaNature (London) 203: 305–307, 1964.CrossRefGoogle Scholar
  13. 13.
    Douglas, W. W.; Kanno, T.; Sampson, S. R. Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetylcholineJ. Physiol. (London) 191: 107–121, 1967.Google Scholar
  14. 14.
    Dunn, L. A.; Holz, R. W. Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cellsJ. Biol. Chem. 258: 4989–4993, 1983.PubMedGoogle Scholar
  15. 15.
    Fenwick, E. M.; Marty, A.; Neher, E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholineJ. Physiol. (London) 331: 577–597, 1982.Google Scholar
  16. 16.
    Fenwick, E. M.; Marty, A.; Neher, E. Sodium and calcium channels in bovine chromaffin cellsJ. Physiol. (London) 331: 599–635, 1982.Google Scholar
  17. 17.
    Ferris, R. M.; Viveros, O. H.; Kirshner, N. Effects of various agents on the Mg2+ -ATP stimulated incorporation and release of catecholamines by isolated bovine adrenomedullary storage vesicles and on secretion from the adrenal medullaBiochem. Pharmacol. 19: 505–514, 1970.PubMedCrossRefGoogle Scholar
  18. 18.
    Galper, J. B.; Catterall, W. A. Inhibition of sodium channels by D600Mol. Pharmacol. 15: 174–178, 1979.PubMedGoogle Scholar
  19. 19.
    Haycock, J. W.; Meligeni, J. A.; Bennett, W. F.; Waymire, J. C. Phosphorylation and activation of tyrosine hydroxylase mediate the acetylcholine-induced increase in catecholamine biosynthesis in adrenal chromaffin cells. J. Biol. Chem. 257: 12641–12648, 1982.Google Scholar
  20. 20.
    Holz, R. W.; Sentor, R. A.; Frye, R. A. Relationship between Ca2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medullaJ. Neurochem. 39: 635–646, 1982.PubMedCrossRefGoogle Scholar
  21. 21.
    Kenigsberg, R. L.; Cote, A.; Trifaro, J. M. Trifluoperazine, a calmodulin inhibitor, blocks secretion in cultured chromaffin cells at a step distal from calcium entryNeuroscience 7: 2277–2286, 1982.PubMedCrossRefGoogle Scholar
  22. 22.
    Kidikoro, Y.; Miyazaki, S.; Ozawa, S. Acetylcholine-induced membrane depolarization and potential fluctuations in the rat adrenal chromaffin cellJ. Physiol. (London) 324: 221–237, 1982.Google Scholar
  23. 23.
    Kilpatrick, D. L.; Slepetis, R. J.; Corcoran, J. J.; Kirshner, N. Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cellsJ. Neurochem. 38: 427–435, 1982.PubMedCrossRefGoogle Scholar
  24. 24.
    Kirshner, N.; Smith, W. J. Metabolic requirements for secretion from the adrenal medullaLife Sci 8: 799–803, 1969.PubMedCrossRefGoogle Scholar
  25. 25.
    Knight, D. E.; Baker, P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fieldsJ. Membr. Biol. 68: 107–140, 1982.PubMedCrossRefGoogle Scholar
  26. 26.
    Kohlhardt, M.; Bauer, B.; Krause, H.; Fleckenstein, A. Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specific inhibitorsPfluegers Arch 335: 309–322, 1972.CrossRefGoogle Scholar
  27. 27.
    Nawrath, H.; Ten Eick, R. E.; McDonald, T. F.; Trautwein, W. On the mechanism underlying the action of D600 on slow inward current and tension in mammalian myocardiumCirc. Res. 40: 408–414, 1977.PubMedGoogle Scholar
  28. 28.
    Oka, M.; Isosaki, M.; Watanabe, J. Calcium flux and catecholamine release in isolated bovine adrenal medullary cells: Effects of nicotinic and muscarinic stimulation. In: Advances in the Biosciences, Volume 36, Synthesis, Storage and Secretion of Adrenal Catecholamines, F. Izumi, K. Kumakura, and M. Oka, eds., Elmsford, N.Y.; Pergamon Press, 1982, pp. 29–36.Google Scholar
  29. 29.
    Pinto, J. E. B.; Trifaro, J. M. The different effects of D600 (methoxyverapamil) on the release of adrenal catecholamines induced by acetylcholine, high potassium or sodium deprivationBr. J. Pharmacol. 57: 127–132, 1976.PubMedGoogle Scholar
  30. 30.
    Ritchie, A. K. Catecholamine secretion in a rat pheochromocytoma cell line: Two pathways for calcium entryJ. Physiol. (London) 286: 541–561, 1979.Google Scholar
  31. 31.
    Rubin, R. P. The role of energy metabolism in calcium-evoked secretion from the adrenal medullaJ. Physiol. (London) 206: 181–192, 1970.Google Scholar
  32. 32.
    Slepetis, R.; Kirshner, N. Inhibition of 45Ca2+ uptake and catecholamine secretion by phenothiazines and pimozide in adrenal medulla cell culturesCell Calcium 3: 183–190, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    Stallcup, W. B. Sodium and calcium fluxes in a clonal nerve cell lineJ. Physiol. (London) 286: 525–540, 1979.Google Scholar
  34. 34.
    Wada, A.; Yanagihara, N.; Izumi, F.; Sakuroi, S.; Kobayashi, H. Trifluoperazine inhibits 45Ca2+ uptake and catecholamine secretion and synthesis in adrenal medullary cellsJ. Neurochem. 40: 481–486, 1983.PubMedCrossRefGoogle Scholar
  35. 35.
    Wilson, S. P.; Kirshner, N. Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cellsJ. Biol. Chem. 258: 4994–5000, 1983.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • N. Krishner
    • 1
  • J. J. Corcoran
    • 1
  • S. P. Wilson
    • 1
  1. 1.Department of PharmacologyDuke University Medical CenterDurhamUSA

Personalised recommendations