Advertisement

Introduction to Electron-Molecule Collisions

  • Kazuo Takayanagi
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

The purpose of this introductory chapter is twofold. First, readers of this book are not necessarily specialists in this particular field. Therefore, the editors thought that it would be appropriate to include an introductory chapter which is easily understood. Sophisticated techniques will not be used in this chapter. Only elementary quantum mechanics and basic mathematics will be required to understand this chapter. The theoretical side will be emphasized in this chapter since it is outside my ability to discuss experimental details.

Keywords

Differential Cross Section Incident Electron Born Approximation Collision Cross Section Adiabatic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    See, e.g., S.L. Lin, R.E. Robson, E.A. Mason, Moment theory of electron drift and diffusion in neutral gases in an electrostatic field, J. Chem. Phys. 71, 3483–3498 (1979).Google Scholar
  2. 2.
    L.G.H. Huxley and R.W. Crompton, The Diffusion and Drift of Electrons in Gases, John Wiley & Sons, New York (1974).Google Scholar
  3. 3.
    D.E. Golden, H.W. Bandel, and J.A. Salerno, Absolute total electron scattering cross sections in H2 and D2 for low electron energies, Phys. Rev. 146, 40–42 (1966).Google Scholar
  4. 4.
    F. Linder and H. Schmidt, Rotational and vibrational excitation of H2 by slow electron impact, Z. Naturforsch. 26a, 1603–1617 (1971).Google Scholar
  5. 5.
    S.K. Srivastava, A. Chutjian, and S. Trajmar, Absolute elastic differential electron scattering cross sections in the intermediate energy region, I. H2, J. Chem. Phys. 63, 2659–2665 (1975).Google Scholar
  6. 6.
    M. Hayashi, Recommended values of transport cross sections for elastic collision and total collision cross sections for electrons in atomic and molecular gases, IPPJ-AM-19 (Institute of Plasma Physics, Nagoya Univeristy) (1981). The recommended momentum-transfer cross section for hydrogen has some error. In Fig. 1, revised data provided by the author have been used.Google Scholar
  7. 7.
    R.W. Crompton, D.K. Gibson, and A.I. Mclntosh, The cross section for the J = 0−2 rotational excitation of hydrogen by slow electrons, Aust. J. Phys. 22, 715–731 (1969).Google Scholar
  8. 8.
    D.K. Gibson, The cross section for rotational excitation of H2 and D2 by low energy electrons, Aust. J. Phys. 23, 683–696 (1970).Google Scholar
  9. 9.
    R.W. Crompton, D.K. Gibson, and A.G. Robertson, Vibrational excitation of H2 by low-energy electrons, Phys. Rev. A 2, 1386–1395 (1970).Google Scholar
  10. 10.
    H. Ehrhardt, L. Langhans, F. Linder, and H.S. Taylor, Resonance scattering of slow electrons from H and CO angular distributions, Phys. Rev. 173, 222–230 (1968).Google Scholar
  11. 11.
    Sunggi Chung and Chun C. Lin, Application of the close-coupling method to excitation of electronic states and dissociation of H2 by electron impact, Phys. Rev. A 17, 1874–1891 (1978).Google Scholar
  12. 12.
    S.K. Srivastava and S. Jensen, Experimental differential and integral electron impact cross sections for the B 1+ ustate of H2 in the intermediate energy region, J. Phys. B 10, 3341–3346 (1977).Google Scholar
  13. 13.
    K.J. Miller and M. Krauss, Born inelastic differential cross sections in H2, J. Chem. Phys. 47, 3754–3762 (1967).Google Scholar
  14. 14.
    D. Rapp and P. Englander-Golden, Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization, J. Chem. Phys. 43, 1464–1479 (1965).Google Scholar
  15. 15.
    D.A. Vroom and F.J. de Heer, Production of excited atoms by impact of fast electrons on molecular hydrogen and deuterium, J. Chem. Phys. 50, 580–590 (1969).Google Scholar
  16. 16.
    D. Rapp, P. Englander-Golden, and D.D. Briglia, Cross sections for dissociative ionization of molecules by electron impact, J. Chem. Phys. 42, 4081–4085 (1965).Google Scholar
  17. 17.
    D. Rapp, T.E. Sharp, and D.D. Briglia, Large isotope effect in the formation of H- or D-by electron impact on H2, HD, and D2, Phys. Rev. Lett. 14, 533–535 (1965).Google Scholar
  18. 18.
    G.J. Schulz and R.K. Asundi, Isotope effect in the dissociative attachment in H2 at low energy, Phys. Rev. 158, 25–29 (1967).Google Scholar
  19. 19.
    C.B. Opal, W.K. Peterson, and E.C. Beaty, Measurements of secondary-electron spectra produced by electron impact ionization of a number of simple gases, J. Chem. Phys. 55, 4100–4106 (1971).Google Scholar
  20. 20.
    R.E. Kennedy, Absolute total electron scattering cross sections for N2 between 0.5 and 50eV, Phys. Rev. A 21, 1876–1883 (1980).Google Scholar
  21. 21.
    H.J. Blaauw, R.W. Wagenaar, D.H. Barends, and F.J. de Heer, Total cross sections for electron scattering from N2 and He, J. Phys. B 13, 359–376 (1980).Google Scholar
  22. 22.
    T.W. Shyn, R.S. Stolaxski, and G.R. Carignan, Angular distribution of electrons elastically scattered from N2, Phys. Rev. A 6, 1002–1012 (1975).Google Scholar
  23. 23.
    T.G. Finn and J.P. Doering, Elastic scattering of 13 to 100eV electrons from N2, J.Chem. Phys. 63, 4399–4404 (1975).Google Scholar
  24. 24.
    J.P. Bromberg, Absolute differential cross section of elastically scattered electrons. I. He, N2, and CO at 500 eV,J. Chem. Phys. 50, 3906–3921 (1969).Google Scholar
  25. 25.
    N. Chandra and A. Temkin, Hybrid theory calculation of simultaneous vibration-rotation in electron-N2 scattering, Phys. Rev. A 14, 507–511 (1976); Tabulation of hybrid theory calculated e-N2 vibrational and rotational cross sections, NASA Technical Note TN D-8347 (1976).Google Scholar
  26. 26.
    B.D. Buckley and P.G. Burke, The scattering of low-energy electrons by diatomic molecules, J. Phys. B 10, 725–739 (1977).Google Scholar
  27. 27.
    A.W. Fliflet, D.A. Levin, M. Ma, and V. McKoy, Discrete-basis-set calculation for e-N2 scattering cross sections in the static-exchange approximation, Phys. Rev. A 17, 160–169 (1978).Google Scholar
  28. 28.
    G.J. Schulz, Vibrational excitation of N2, CO, and H2 by electron impact, Phys. Rev. 135, 988A–994A (1964).Google Scholar
  29. 29.
    D.C. Cartwright, S. Trajmar, A. Chutjian, and W. Williams, Electron impact excitation of the electronic states of N2. II. Integral cross sections at incident energies from 10 to 50 eV, Phys. Rev. A 16, 1041–1051 (1977).Google Scholar
  30. 30.
    S. Halas and B. Adamczyk, Cross sections for the production of N+ 2, N+, and N2+ 2 from nitrogen by electrons in the energy range 16–600 eV, Int. J. Mass Spectrom. Ion Phys. 10, 157–160(1972/3).Google Scholar
  31. 31.
    W.L. Borst and E.C. Zipf, Cross section for electron-impact excitation of the (0, 0) first negative band of N+ 2 from threshold to 3 keV, Phys. Rev. A 1, 834–840 (1970).Google Scholar
  32. 32.
    K. Takayanagi, Airglow excitation by precipitating low-energy electrons (in Japanese), Bull. Inst. Space Aeronaut. Sci. 10, 235–246 (1974).Google Scholar
  33. 33.
    M.A. Morrison and P.J. Hay, Ab initio adiabatic polarization potentials for electron-molecule and positron-molecule collisions: The e-N2 and e-CO systems, Phys. Rev. A 20, 740–748 (1979).Google Scholar
  34. 34.
    R.A. Eades, D.G. Truhlar, and D.A. Dixon, Ab initio self-consistent-field polarizabilities and electron-molecule adiabatic polarization potentials. III. N2, Phys. Rev. A 20, 867–878 (1979).Google Scholar
  35. 35.
    K. Onda, Electronic polarization of atoms in charged-particle impact, Inst. Space Aeronaut. Sci. Univ. Tokyo. Rep. 36, 343–366 (1971).Google Scholar
  36. 36.
    K. Onda and D.G. Truhlar, New approaches to the quantum-mechanical treatment of charge polarization in intermediate-energy electron scattering, Phys. Rev. A 22, 86–100 (1980).Google Scholar
  37. 37.
    S. Hayashi, Theoretical and experimental studies of elastic scattering of electrons by molecules, thesis, University of Tokyo (1975).Google Scholar
  38. 38.
    S. Hayashi and K. Kuchitsu, A quasi-adiabatic polarization potential for elastic electron-atom scattering. Helium and other atoms, Chem. Phys. Lett. 44, 1–4 (1976).Google Scholar
  39. 39.
    S. Hayashi and K. Kuchitsu, A quasi-adiabatic polarization potential for elastic electron-atom scattering. I. General theory, J. Phys. Soc. Jpn. 42, 621–627 (1977).Google Scholar
  40. 40.
    J.C. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81, 385–390 (1951).Google Scholar
  41. 41.
    J.C. Slater, Quantum Theory of Atomic Structure II, Appendix 22, McGraw-Hill, New York (1960).Google Scholar
  42. 42.
    S. Hara, The scattering of slow electrons by hydrogen molecules, J. Phys. Soc. Jpn. 22, 710–718 (1967).Google Scholar
  43. 43.
    M.H. Mittleman and K.M. Watson, Effects of the Pauli principle on the scattering of high-energy electrons by atoms, Ann. Phys. (N. Y.) 10, 268–279 (1960).Google Scholar
  44. 44.
    J.B. Furness and I.E. McCarthy, Semiphenomenological optical model for electron scattering on atoms, J. Phys. B 6, 2280–2291 (1973).Google Scholar
  45. 45.
    M.E. Riley and D.G. Truhlar, Approximations for the exchange potential in electron scattering, J. Chem. Phys. 63, 2182–2191 (1975).Google Scholar
  46. 46.
    M.E. Riley and D.G. Truhlar, Effects of the Pauli principle on electron scattering by open-shell targets, J. Chem. Phys. 65, 792–800 (1976).Google Scholar
  47. 47.
    B.H. Bransden, M.R.C. McDowell, C.J. Noble, and T. Scott, Equivalent exchange potentials in electron scattering, J. Phys. B 9, 1301–1317 (1976).Google Scholar
  48. 48.
    K. Onda and D.G. Truhlar, Comparison of local-exchange approximations for intermediate-energy electron-molecule differential cross sections, J. Chem. Phys. 72, 1415–1417 (1980).Google Scholar
  49. 49.
    N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, Third Edition, Oxford University Press, New York (1965).Google Scholar
  50. 50.
    H.S.W. Massey and E.C. Bullard, The scattering of electrons by nitrogen molecules, Proc. Cambridge Phil. Soc. 29, 511–521 (1933).Google Scholar
  51. 51.
    H.S.W. Massey, Electronic and Ionic Impact Phenomena, Vol. II, Chap. 10, Clarendon Press, Oxford (1969).Google Scholar
  52. 52.
    D. Herrmann, K. Jost, J. Kessler, and M. Fink, Differential cross sections for elastic electron scattering. II. Charge cloud polarization in N2, J. Chem. Phys. 64, 1–5 (1976).Google Scholar
  53. 53.
    S. Hayashi and K. Kuchitsu, Elastic scattering of electrons by molecules at intermediate energies. Calculation of double scattering effects in N2 and P4, Chem. Phys. Lett. 41, 575–579 (1976).Google Scholar
  54. 54.
    E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge (1963).Google Scholar
  55. 55.
    G. Racah, Theory of complex spectra II, Phys. Rev. 62, 438–462 (1942).Google Scholar
  56. 56.
    M. Kotani, An acoustical problem relating to the theory of Rayleigh disc, Proc. Phys.-Math. Soc. Jpn. 15, 30–57 (1933).Google Scholar
  57. 57.
    C. Flammer, Spheroidal Wave Functions, Stanford University Press, Stanford (1957).Google Scholar
  58. 58.
    L.J. Chu and J.A. Stratton, Elliptic and spheroidal wave functions, J. Math. Phys. 20, 259–309 (1941).Google Scholar
  59. 59.
    K. Takayanagi, Scattering of slow electrons by molecules, Prog. Theor. Phys. Suppl. 40, 216–248 (1967).Google Scholar
  60. 60.
    H.C. Stier, Zur Deutung des Ramsauer-Effektes bei symmetrischen, zweiatomigen Molekülen, Z. Phys. 76, 439–470 (1932).Google Scholar
  61. 61.
    J.B. Fisk, Theory of the scattering of slow electrons by diatomic molecules, Phys. Rev. 49, 167–173 (1936).Google Scholar
  62. 62.
    J.B. Fisk, On the cross sections of Cl2 and N2 for slow electrons, Phys. Rev. 51, 25–28 (1937).Google Scholar
  63. 63.
    S. Nagahara, The scattering of slow electrons by the diatomic molecules. II. Elastic scattering by the hydrogen molecules, J. Phys. Soc. Jpn. 9, 52–55 (1954).Google Scholar
  64. 64.
    S. Hara, A two-center approach in the low energy electron-H2 scattering, J. Phys. Soc. Jpn. 27, 1009–1019 (1969).Google Scholar
  65. 65.
    M. Shimizu, Two-center Coulomb potential approximation, J. Phys. Soc. Jpn. 18, 811–819 (1963).Google Scholar
  66. 66.
    K. Takayanagi and Y. Itikawa, Scattering of slow electrons by polar molecules, J. Phys. Soc. Jpn. 24, 160–168 (1968).Google Scholar
  67. 67.
    H. Takagi and H. Nakamura, Elastic scattering of electrons from H+ 2: phaseshifts, quantum defects and two-electron excited states, J. Phys. B 13, 2619–2632 (1980).Google Scholar
  68. 68.
    K. Onda, Theory of low-energy electron scattering by polyatomic molecules, I., J. Phys. Soc. Jpn. 36, 826–838 (1974).Google Scholar
  69. 69.
    D. Dill and J.L. Dehmer, Electron-molecule scattering and molecular photoionization using the multiple-scattering method, J. Chem. Phys. 61, 692–699 (1974).Google Scholar
  70. 70.
    J. Siegel, J.L. Dehmer, and D. Dill, Elastic-electron-scattering cross sections for N2 from 0 to 1000 eV. Energy-dependent exchange potentials, Phys. Rev. A 21, 85–94 (1980).Google Scholar
  71. 71.
    D. Dill and J.L. Dehmer, Total elastic electron scattering cross section for N2 between 0 and 1000eV, Phys. Rev. A 16, 1423–1431 (1977).Google Scholar
  72. 72.
    J. Siegel, D. Dill, and J.L. Dehmer, Differential elastic electron scattering cross sections for N2 from 0 to 30eV, Phys. Rev. A 17, 2106–2109 (1978).Google Scholar
  73. 73.
    J.L. Dehmer, J. Siegel, and D. Dill, Shape resonances in e-SF6 scattering, J. Chem. Phys. 69, 5205–5206 (1978).Google Scholar
  74. 74.
    M.G. Lynch, D. Dill, J. Siegel, and J.L. Dehmer, Elastic electron scattering by CO2, COS, and CS2 from 0 to 100 eV, J. Chem. Phys. 71, 4249–4254 (1979).Google Scholar
  75. 75.
    J.L. Dehmer, J. Siegel, J. Welch, and D. Dill, Origin of enhanced vibrational excitation in N2 by electron impact in the 15-35 eV region, Phys. Rev. A 21, 101–104 (1980).Google Scholar
  76. 76.
    P.M. Morse, Excitation of molecular rotation-vibration by electron impact, Phys. Rev. 90, 51–55 (1953).Google Scholar
  77. 77.
    T.R. Carson, The vibrational and rotational excitation of molecular hydrogen by electron impact, Proc. Phys. Soc. A 67, 909–916 (1954).Google Scholar
  78. 78.
    E. Gerjuoy and S. Stein, Rotational excitation by slow electrons, Phys. Rev. 97, 1671–1679 (1955).Google Scholar
  79. 79.
    E. Gerjuoy and S. Stein, Rotational excitation by slow electrons, II. Phys. Rev. 98, 1848–1851 (1955).Google Scholar
  80. 80.
    A. Temkin and F.H.M. Faisal, Adiabatic theory of rotational excitation of non-∑ states, Phys. Rev. A 3, 520–521 (1971).Google Scholar
  81. 81.
    S. Geltman and K. Takayanagi, Excitation of molecular rotation by slow electrons, II, Phys. Rev. 143, 25–30 (1966).Google Scholar
  82. 82.
    K. Takayanagi, Excitation of molecular rotation and vibration by low energy electron impact, JILA Report No. 11 (1964); K. Takayanagi, Behavior of slow electrons in the atmospheric gases, Part I, Rep. Ionos. Space Res. Jpn 19, 1–15 (1965).Google Scholar
  83. 83.
    A. Dalgarno and R.J. Moffett, The rotational excitation of molecular nitrogen by slow electrons, Proc. Natl. Acad. Sci. India A 33, Part 4, 511–521 (1963).Google Scholar
  84. 84.
    H.S.W. Massey, The collision of electrons with rotating dipoles, Proc. Cambridge Phil. Soc. 28, 99–105 (1931).Google Scholar
  85. 85.
    K. Takayanagi, Rotational and vibrational excitation of polar molecules by slow electrons, J. Phys. Soc. Jpn. 21, 507–514 (1966).Google Scholar
  86. 86.
    M. Inokuti, On the evaluation of the Born partial-wave amplitude for electron scattering by any electrostatic multiple field, J. Phys. B 13, 1221–1227 (1980).Google Scholar
  87. 87.
    Y. Itikawa and K. Takayanagi, Rotational transition in polar molecules by electron collisions: Applications to CN and HC1, J. Phys. Soc. Jpn. 26, 1254–1264 (1969).Google Scholar
  88. 88.
    A. Altshuler, Theory of low-energy electron scattering by polar molecules, Phys. Rev. 107, 114–117 (1957).Google Scholar
  89. 89.
    W.R. Garrett, Low-energy electron scattering by polar molecules, Mol. Phys. 24, 465–487 (1972).Google Scholar
  90. 90.
    K. Takayanagi, Low-energy electron-molecule scattering, Comments At. Mol. Phys. 3, 95–106 (1972).Google Scholar
  91. 91.
    O.H. Crawford, Scattering of low-energy electrons from polar molecules, J. Chem. Phys. 47, 1100–1104 (1967).Google Scholar
  92. 92.
    Y. Itikawa, Electron-impact rotational excitation of a symmetric-top molecule: Application to NH3, J. Phys. Soc. Jpn. 30, 835–842 (1971).Google Scholar
  93. 93.
    Y. Itikawa, Effects of the polarization force on the rotational transition in polyatomic molecules by electron collision, J. Phys. Soc. Jpn. 31, 1532–1535 (1971).Google Scholar
  94. 94.
    Y. Itikawa, Rotational transition in an asymmetric-top molecule by electron collision: Applications to H2and H2CO, J. Phys. Soc. Jpn. 32, 217–226 (1972).Google Scholar
  95. 95.
    G.J. Schulz, Measurement of excitation of N2, CO, and He by electron impact, Phys. Rev. 116, 1141–1147 (1959).Google Scholar
  96. 96.
    J.C.Y. Chen and J.L. Magee, Excitation of molecular vibration by slow electron impact, J. Chem. Phys. 36, 1407–1411 (1962).Google Scholar
  97. 97.
    H.S.W. Massey, The excitation of molecular vibration by impact of slow electrons, Trans. Faraday Soc. 31, 556–563 (1935).Google Scholar
  98. 98.
    Ta-You Wu, Excitation of molecular vibration by electrons, Phys. Rev. 71, 111–118 (1947).Google Scholar
  99. 99.
    A.G. Engelhardt and A.V. Phelps, Elastic and inelastic collision cross sections in hydrogen and deuterium from transport coefficients, Phys. Rev. 131, 2115–2128 (1963).Google Scholar
  100. 100.
    H. Ehrhardt and F. Linder, Rotational excitation of H2 by slow electrons in a beam experiment, Phys. Rev. Lett. 21, 419–421 (1968).Google Scholar
  101. 101.
    K. Takayanagi, Vibrational excitation of hydrogen molecule by slow electrons, J. Phys. Soc. Jpn. 20, 562–565 (1965); see also, K. Takayanagi, Excitation of molecular vibration by slow electrons, J. Phys. Soc. Jpn 20, 2297 (1965).Google Scholar
  102. 102.
    E.L. Breig and C.C. Lin, Vibrational excitation of diatomic molecules by electron impact, J. Chem. Phys. 43, 3839–3845 (1965).Google Scholar
  103. 103.
    J.N. Bardsley, A. Herzenberg, and F. Mandl, Vibrational excitation and dissociative attachment in the scattering of electrons by hydrogen molecules, Proc. Phys. Soc. 89, 321–340 (1966).Google Scholar
  104. 104.
    R.J.W. Henry and E.S. Chang, Rotational-vibrational excitation of H2 by slow electrons, Phys. Rev. A 5, 276–284 (1972).Google Scholar
  105. 105.
    F.H.M. Faisal and A. Temkin, Application of the adiabatic-nuclei theory to vibrational excitation, Phys. Rev. Lett. 28, 203–206 (1972).Google Scholar
  106. 106.
    Y. Itikawa, The Born cross section for vibrational excitation of a polyatomic molecule by electron collisions, J. Phys. Soc. Jpn. 36, 1121–1126 (1974).Google Scholar
  107. 107.
    Y. Itikawa, Electron-impact vibrational excitation of H2O, J. Phys. Soc. Jpn. 36, 1127–1132 (1974).Google Scholar
  108. 108.
    A. Chutjian and H. Tanaka, Electron impact cross sections for v = 0 → 1 vibrational excitation in CO at electron energies of 3 to 100 eV, J. Phys. B. 13, 1901–1908 (1980).Google Scholar
  109. 109.
    R.D. Hake and A.V. Phelps, Momentum-transfer and inelastic-collision cross sections for electrons in O2, CO, and CO2, Phys. Rev. 158, 70–84 (1967).Google Scholar
  110. 110.
    D.F. Register, H. Nishimura, and S. Trajmar, Elastic scattering and vibrational excitation of CO2 by 4,10, 20 and 50 eV electrons, J. Phys. B 13, 1651–1662 (1980).Google Scholar
  111. 111.
    B.R. Bulos and A.V. Phelps, Excitation of the 4.3μm bands of CO2 by low-energy electrons, Phys. Rev. A 14, 615–629 (1976).Google Scholar
  112. 112.
    M. Gryzinsky, Classical theory of electronic and ionic inelastic collisions, Phys. Rev. 115, 374–383 (1959).Google Scholar
  113. 113.
    E. Bauer and CD. Bartky, Calculation of inelastic electron-molecule collision cross sections by classical methods, J. Chem. Phys. 43, 2466–2476 (1965).Google Scholar
  114. 114.
    V.I. Ochkur, The Born-Oppenheimer method in the theory of atomic collision, Zh. Eksp. Teor. Fiz. USSR 45, 734–741 (1963); Sov. Phys. JETP 18, 503-508 (1964).Google Scholar
  115. 115.
    M.R.H. Rudge, The calculation of exchange scattering amplitudes, Proc. Phys. Soc. 85, 607–608 (1965).Google Scholar
  116. 116.
    K. Bell and B.L. Moiseiwitsch, First-order exchange approximation, Proc. R. Soc. (London) A 276, 346–353 (1963).Google Scholar
  117. 117.
    H. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. (Leipzig) 5, 325–400 (1930).Google Scholar
  118. 118.
    J.O. Hirschfelder, W.B. Brown, and S.T. Epstein, Recent developments in perturbation theory, Adv. Quantum Chem. 1, 255–374 (1964).Google Scholar
  119. 119.
    E.N. Lassettre, A. Skerbele, and M.A. Dillon, Generalized oscillator strength for 11S→21 P transition of helium. Theory of limiting oscillator strengths, J. Chem. Phys. 50, 1829–1839 (1969).Google Scholar
  120. 120.
    M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules — The Bethe theory revisited, Rev. Mod. Phys. 43, 297–347 (1971).Google Scholar
  121. 121.
    M. Inokuti, Y. Itikawa, and J.E. Turner, Addenda: Inelastic collisions of fast charged particles with atoms and molecules-The Bethe theory revisited [Rev. Mod. Phys. 43, 297 (1971)], Rev. Mod. Phys. 50, 23–35 (1978).Google Scholar
  122. 122.
    A.W. Fliflet and V. McKoy, Distorted-wave-approximation cross-sections for excitation of the b 3+ u and B 1+ u states of H2 by low-energy electron impact, Phys. Rev. A 21, 1863–1875 (1980).Google Scholar
  123. 123.
    A.U. Hazi, Impact-parameter method for electronic excitation of molecules by electron impact, Phys. Rev. A 23, 2232–2240 (1981).Google Scholar
  124. 124.
    J.R. Oppenheimer, On the quantum theory of electron impact, Phys. Rev. 32, 361–376 (1928).Google Scholar
  125. 125.
    D.R. Bates, A. Fundaminsky, J.W. Leech, and H.S.W. Massey, Excitation and ionization of atoms by electron impact-The Born and Oppenheimer approximations, Phil. Trans. R. Soc. A243, 93–143 (1950).Google Scholar
  126. 126.
    R.A. Bonham, Inelastic scattering from atoms at medium energies, I. Bound states, J. Chem. Phys. 36, 3260–3269 (1962).Google Scholar
  127. 127.
    S.P. Khare, Excitation of hydrogen molecules by electron impact, Phys. Rev. 149, 33–37 (1966).Google Scholar
  128. 128.
    S.P. Khare, Excitation of hydrogen molecules by electron impact, II. Excitation to D(3pπ1IIu) state, Phys. Rev. 152, 74–75 (1966).Google Scholar
  129. 129.
    S.P. Khare, Excitation of hydrogen molecules by electron impact, III. Singlet-triplet excitations, Phys. Rev. 157, 107–112 (1967).Google Scholar
  130. 130.
    D.C. Cartwright and A. Kuppermann, Electron-impact excitation cross section for the two lowest triplet states of molecular hydrogen, Phys. Rev. 163, 86–102 (1967).Google Scholar
  131. 131.
    R.C. Stabler, Rotational excitation of molecular ions by slow electrons, Phys. Rev. 131, 679–683 (1963).Google Scholar
  132. 132.
    R.F. Boikova and V.D. Ob’edkov, Rotational and vibrational excitation of molecular ions by electrons, Zh. Eksp. Teor. Fiz. 54, 1439–1444 (1968); Sov. Phys. JETP 27, 772-774 (1968).Google Scholar
  133. 133.
    D.M. Chase, Adiabatic approximation for scattering processes, Phys. Rev. 104, 838–842 (1956).Google Scholar
  134. 134.
    Yu.D. Oksyuk, Excitation of the rotational levels of diatomic molecules by electron impact in the adiabatic approximation, Zh. Eksp. Teor. Fiz. 49, 1261–1273 (1965); Sov. Phys. JETP 22, 873-881 (1966).Google Scholar
  135. 135.
    S. Hara, Rotational excitation of H2 by slow electrons, J. Phys. Soc. Jpn. 27, 1592–1597 (1969).Google Scholar
  136. 136.
    R.J.W. Henry and N.F. Lane, Polarization and exchange effects in low-energy electron-H2 scattering, Phys. Rev. 183, 221–231 (1969).Google Scholar
  137. 137.
    K. Takayanagi and Y. Itikawa, The rotational excitation of molecules by slow electrons, Adv. At. Mol. Phys. 6, 105–153 (1970).Google Scholar
  138. 138.
    K. Takayanagi, Rotational excitation of the HD molecule by low-energy electron collision, J. Phys. Soc. Jpn. 28, 1527–1535 (1970).Google Scholar
  139. 139.
    S. Hara, Rotational excitation of the HD molecule by slow electrons, J. Phys. Soc. Jpn. 30, 819–823 (1971).Google Scholar
  140. 140.
    R.J.W. Henry and N.F. Lane, Polarization and exchange effects in low-energy electron-D2 scattering, Phys. Rev. A 4, 410–411 (1971).Google Scholar
  141. 141.
    K. Takayanagi, Low energy electron-molecule scattering, Atomic Physics, Vol. 4 (G. zu Putlitz, E.W. Weber, and A. Winnacker, eds.), Plenum Press, New York, (1975), pp. 435–447.Google Scholar
  142. 142.
    R.J.W. Henry and E.S. Chang, Rotational-vibrational excitation of H2 by slow electrons, Phys. Rev. A 5, 276–284 (1972).Google Scholar
  143. 143.
    R.J.W. Henry, Vibrational and rotational excitation of molecular hydrogen by electron impact, Phys. Rev. A 2, 1349–1358 (1970).Google Scholar
  144. 144.
    F.H.M. Faisal and A. Temkin, Application of the adiabatic-nuclei theory to vibrational excitation, Phys. Rev. Lett. 28, 203–206 (1972).Google Scholar
  145. 145.
    N. Chandra and A. Temkin, Hybrid theory and calculation of e-N2 scattering, Phys. Rev. A 13, 188–203 (1976).Google Scholar
  146. 146.
    E.S. Chang and U. Fano, Theory of electron-molecule collisions by frame transformations, Phys. Rev. A 6, 173–185 (1972).Google Scholar
  147. 147.
    R.K. Nesbet, Energy-modified adiabatic approximation for scattering theory, Phys. Rev. A 19, 551–556 (1979).Google Scholar
  148. 148.
    R.J. Glauber, High energy collision theory, in Lectures in Theoretical Physics (W.E. Brittin and L.G. Dunham, eds.), Interscience, New York (1959), Vol. 1, pp. 315–414.Google Scholar
  149. 149.
    T.N. Chang, R.T. Poe, and P. Ray, Glauber-theory approach for molecular vibrational excitations, Phys. Rev. Lett. 31, 1097–1099 (1973).Google Scholar
  150. 150.
    K. Takayanagi, Low-energy electron scattering from strongly polar molecules, Prog. Theor. Phys. 52, 337–338 (1974).Google Scholar
  151. 151.
    K. Takayanagi, The theory of low energy electron-molecule scattering, in The Physics of Electronic and Atomic Collisions, IX International Conference on the Physics of Electronic and Atomic Collisions, (J.S. Risley and R. Geballe, eds.) University of Washington Press, Seattle (1976), pp. 219–230.Google Scholar
  152. 152.
    Y. Itikawa, Electron scattering by polar molecules, Phys. Rep. 46, 117–164 (1978).Google Scholar
  153. 153.
    Symposium on Electron-Molecule Collisions, (I. Shimamura and M. Matsuzawa, eds.), University of Tokyo, (1979).Google Scholar
  154. 154.
    Th. Rescigno, V. McKoy, and B. Schneider, eds., Electron-Molecule and Photon-Molecule Collisions, Plenum Press, New York (1979).Google Scholar
  155. 155.
    N.F. Lane, The theory of electron-molecule collisions, Rev. Mod. Phys. 52, 29–119 (1980).Google Scholar
  156. 156.
    P.G. Burke, Theory of low energy electron-molecule collisions, Adv. At. Mol. Phys. 15, 471–506 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Kazuo Takayanagi
    • 1
  1. 1.Institute of Space and Astronautical ScienceMeguro-ku, TokyoJapan

Personalised recommendations