Advertisement

Properties and Function of Phosphatidylcholine Transfer Proteins

  • Karel W. A. Wirtz
  • Tom Teerlink
  • Rob Akeroyd

Abstract

When phospholipids extracted from biological membranes are dispersed in water, bilayer structures are spontaneously formed (Bangham et al., 1965). This process of self-association is thermodynamically driven. It involves the extrusion of the hydrophobic acyl chains from the medium and the orientation of the polar head groups at the bilayer-water interface. In general, natural phospholipids have a very low critical micelle concentration. Consequently, the rate at which a monomer molecule dissociates from the bilayer is low, thus resulting in a slow approach to equilibrium (Reynolds, 1982). In agreement with this notion, spontaneous equilibration of phospholipid molecules between model membrane structures by diffusion of soluble monomers is a matter of days (Duckwitz-Peterlein et al, 1977; McLean and Phillips, 1981). Interestingly, equilibration is greatly accelerated when membranes are prepared with phospholipids containing unnatural fatty acids like fluorescently labeled fatty acids (Roseman and Thompson, 1980; Nichols and Pagano, 1981) or myristic acid (Martin and MacDonald, 1976). This acceleration may be a reflection on the stability of these lipid molecules in the bilayer structure apparently resulting in an enhanced establishment of the bilayer-monomer equilibrium. Despite the great tendency for a phospholipid molecule to stay with the bilayer structure, numerous studies with intact cells have indicated that in situ phospholipid movement between subcellular organelles can be very fast (Stein and Stein, 1969; Wirtz and Zilversmit, 1969; Jungalwala and Dawson, 1970). It is believed now that the phospholipid transfer proteins detected in the cytoplasm of mammalian and plant tissues are involved in this intermembranous transfer of phospholipids.

Keywords

Acyl Chain Transfer Protein Bovine Liver Exchange Protein Phospholipid Transfer Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelkader, A. B., and Mazliak, P., 1970, Echange de lipides entre mitochondries, microsomes et surnageant cytoplasmique de cellules de pomme de terre ou de chou-fleur, Eur. J. Biochem. 15:250–262.PubMedCrossRefGoogle Scholar
  2. Akeroyd, R., Moonen, P., Westerman, J., Puyk, W. C., and Wirtz, K. W. A., 1981a, The complete primary structure of the phosphatidylcholine-transfer protein from bovine liver. Isolation and characterization of the cyanogen bromide peptides, Eur. J. Biochem. 114:385–391.CrossRefGoogle Scholar
  3. Akeroyd, R., Lange, L. G., Westerman, J., and Wirtz, K. W. A., 1981b, Modification of the phosphatidylcholine transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue, Eur. J. Biochem. 121:77–81.CrossRefGoogle Scholar
  4. Akeroyd, R., Lenstra, J. A., Westerman, J., Vriend, G., Wirtz, K. W. A., and van Deenen, L. L. M., 1982, Prediction of secondary structural elements in the phosphatidylcholine transfer protein from bovine liver, Eur. J. Biochem. 121:391–394.PubMedCrossRefGoogle Scholar
  5. Akiyama, M, and Sakagami, T., 1969, Exchange of mitochondria lecithin and cephalin with those in rat liver microsomes, Biochim. Biophys. Acta 187:105–112.PubMedGoogle Scholar
  6. Akutsu, H., and Seelig, J., 1981, Interaction of metal ions with phosphatidylcholine bilayer membranes, Biochemistry 20:7366–7373.PubMedCrossRefGoogle Scholar
  7. Bangham, A. D., Standish, M. M., and Watkins, J. C., 1965, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Biol. 13:238–252.PubMedCrossRefGoogle Scholar
  8. Bozzato, R. P., and Tinker, D. O., 1982, Effects of membrane fluidity and identification of the rate-limiting step in the protein-mediated phosphatidylcholine exchange reaction, Can. J. Biochem. 60:409–418.PubMedCrossRefGoogle Scholar
  9. Burstein, E. A., Vedenkino, N. S., and Ivkova, M. N., 1973, Fluorescence and the location of the tryptophan residues in protein molecules, Photochem. Photobiol. 18:263–279.PubMedCrossRefGoogle Scholar
  10. Chou, P. Y., and Fasman, G. D., 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47:45–148.PubMedGoogle Scholar
  11. Cobon, G. S., Crowfoot, P. D., Murphy, M., and Linnane, A. W., 1976, Exchange of phospholipids between mitochondria and microsomes in vitro stimulated by yeast cell cytosol, Biochim. Biophys. Acta 441:255–259.PubMedGoogle Scholar
  12. Cohen, L. K., Lueking, D. R., and Kaplan, S., 1979, Intermembrane phospholipid transfer mediated by cell-free extracts of Rhodopseudomonas sphaeroides, J. Biol. Chem. 254:721–728.Google Scholar
  13. Crain, R. C., and Zilversmit, D. B., 1980, Two nonspecific phospholipid exchange proteins from beef liver 1. Purification and characterization, Biochemistry 19:1433–1439.PubMedCrossRefGoogle Scholar
  14. Damen, J., Regts, J., and Scherphof, G., 1982, Transfer of [14C]phosphatidylcholine between liposomes and human plasma high density lipoprotein. Partial purification of a transfer-stimulating plasma factor using a rapid transfer assay, Biochim. Biophys. Acta 712:444–452.PubMedGoogle Scholar
  15. De Kruyff, B., and Wirtz, K. W. A., 1977, Induction of a relatively fast transbilayer movement of phosphatidylcholine in vesicles. A 13C NMR study, Biochim. Biophys. Acta 468:318–326.CrossRefGoogle Scholar
  16. Demel, R. A., Wirtz, K. W. A., Kamp, H. H., Geurts Van Kessel, W. S. M., and Van Deenen, L. L. M., 1973, Phosphatidylcholine exchange protein from beef liver, Nature New Biol. 246:102–105.PubMedGoogle Scholar
  17. Devaux, P. F., Moonen, P., Bienvenue, A., and Wirtz, K. W. A., 1977, Lipid-protein interaction in the phosphatidylcholine exchange protein, Proc. Natl. Acad. Sci. USA 74:1807–1810.PubMedCrossRefGoogle Scholar
  18. DiCorleto, P. E., Fakharzadeh, F. F., Searles, L. L., and Zilversmit, D. B., 1977, Stimulation by acidic phospholipid of protein-catalyzed phosphatidylcholine transfer, Biochim. Biophys. Acta 468:296–304.PubMedCrossRefGoogle Scholar
  19. DiCorleto, P. E., Warach, J. B., and Zilversmit, D. B., 1979, Purification and characterization of two phospholipid exchange proteins from bovine heart, J. Biol. Chem. 254:7795–7802.PubMedGoogle Scholar
  20. Dollady, D., Grosbois, M., Guerbette, F., and Kader, J. C., 1982, Purification of a basic phospholipid transfer protein from maize seedlings, Biochim. Biophys. Acta 710:143–153.Google Scholar
  21. Duckwitz-Peterlein, G., Eilenberger, G., and Overath, P., 1977, Phospholipid exchange between bilayer membranes, Biochim. Biophys. Acta 469:311–325.PubMedCrossRefGoogle Scholar
  22. Dyatlovitskaya, E. V., Timofeeva, N. G., and Bergelson, L. D., 1978, A universal lipid exchange protein from rat hepatoma, Eur. J. Biochem. 82:463–471.PubMedCrossRefGoogle Scholar
  23. Engle, M. J., Van Golde, L. M. G., and Wirtz, K. W. A., 1978, Transfer of phospholipids between subcellular fractions of the lung, FEBS Lett. 86:277–281.PubMedCrossRefGoogle Scholar
  24. Hauser, H., Hinckley, C. C., Krebs, J., Levine, B. A., Phillips, M. C., and Williams, R. J. P., 1977, The interaction of ions with phosphatidylcholine bilayers, Biochim. Biophys. Acta 468:364–377.PubMedCrossRefGoogle Scholar
  25. Helmkamp, G. M., 1980, Concerning the mechanism of action of bovine liver phospholipid exchange protein:Exchange or net transfer, Biochem. Biophys. Res. Commun., 97:1091–1096.PubMedCrossRefGoogle Scholar
  26. Helmkamp, G. M., Harvey, M. S., Wirtz, K. W. A., and Van Deenen, L. L. M., 1974, Phospholipid exchange between membranes. Purification of bovine brain proteins that preferentially catalyze the transfer of phosphatidylinositol, J. Biol. Chem. 249:6382–6389.PubMedGoogle Scholar
  27. Helmkamp, G. M., Nelemans, S. A., and Wirtz, K. W. A., 1976, Immunological comparison of phosphatidylinositol and phosphatidylcholine exchange proteins in bovine brain, liver and heart, Biochim. Biophys. Acta 424:168–182.PubMedGoogle Scholar
  28. Huang, C., and Mason, J. T., 1978, Geometric packing constraints in egg phosphatidylcholine vesicles, Proc. Natl. Acad. Sci. USA 75:308–310.PubMedCrossRefGoogle Scholar
  29. Ihm, J., Harmony, J. A. K., Ellsworth, J. L., and Jackson, R. L., 1980, Simultaneous transfer of cholesteryl ester and phospholipid by protein(s) isolated from human lipoprotein-free plasma, Biochem. Biophys. Res. Commun. 93:1114–1120.PubMedCrossRefGoogle Scholar
  30. Janin, J., and Chothia, C., 1980, Packing of α-helices onto β-pleated sheets and the anatomy of α/β proteins, J. Mol. Biol. 143:95–128.PubMedCrossRefGoogle Scholar
  31. Johnson, L. W., Hughes, M. E., and Zilversmit, D. B., 1975, Use of phospholipid exchange protein to measure inside-outside transposition in phosphatidylcholine liposomes, Biochim. Biophys. Acta 375:176–185.PubMedCrossRefGoogle Scholar
  32. Jungalwala, F. B., and Dawson, R. M. C., 1970, Phospholipid synthesis and exchange in isolated liver cells, Biochem. J. 117:481–490.PubMedGoogle Scholar
  33. Kader, J. C., 1975, Proteins and the intracellular exchange of lipids. 1. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber, Biochim. Biophys. Acta 380:31–44.PubMedGoogle Scholar
  34. Kader, J. C., Dollady, D., and Mazlick, P., 1983, Phospholipid transfer proteins, in:Phospholipids ( J. N. Hawthorne and G. B. Ansell, eds.), Elsevier Biomedical Press, Amsterdam, pp. 279–311.Google Scholar
  35. Kamp, H. H., Wirtz, K. W. A., and Van Deenen, L. L. M., 1973, Some properties of phosphatidylcholine exchange protein purified from beef liver, Biochim. Biophys. Acta 318:313–325.CrossRefGoogle Scholar
  36. Kamp, H. H., Wirtz, K. W. A., and Van Deenen, L. L. M., 1975a, Delipidation of the phosphatidylcholine exchange protein from beef liver by detergents, Biochim. Biophys. Acta 398:401–414.PubMedGoogle Scholar
  37. Kamp, H. H., Sprengers, E. D., Westerman, J., Wirtz, K. W. A., and Van Deenen, L. L. M., 1975b, Action of phospholipases on the phosphatidylcholine exchange protein from beef liver, Biochim. Biophys. Acta 398:415–423.PubMedGoogle Scholar
  38. Kamp, H. H., Wirtz, K. W. A., Baer, P. R., Slotboom, A. J., Rosenthal, A. F., Paltauf, F., and Van Deenen, L. L. M., 1977, Specificity of the phosphatidylcholine exchange protein from bovine liver, Biochemistry 16:1310–1316.PubMedCrossRefGoogle Scholar
  39. Kanehisa, M. I., and Tsong, T. Y., 1980, Local hydrophobicity stabilizes secondary structures in proteins, Biopolymers 19:1617–1628.PubMedCrossRefGoogle Scholar
  40. Kasper, A. M., and Helmkamp, G. M., 1981, Protein-catalyzed phospholipid exchange between gel and liquid-crystalline phospholipid vesicles, Biochemistry 20:146–151.PubMedCrossRefGoogle Scholar
  41. Lifter, J., Hew, C. L., Yoshioka, M., Richards, F. F., and Konigsberg, W. H., 1974, Affinity-labeled peptides obtained from the combining region of myeloma protein 460, Biochemistry 13:3567–3571.PubMedCrossRefGoogle Scholar
  42. Lim, V. I., 1974a, Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure, J. Mol. Biol. 88:857–872.PubMedCrossRefGoogle Scholar
  43. Lim, V. I., 1974b, Algorithms for prediction of α-helical and ß-structural regions in globular proteins, J. Mol. Biol. 88:873–894.PubMedCrossRefGoogle Scholar
  44. Lumb, R. H., Kloosterman, A. D., Wirtz, K. W. A., and Van Deenen, L. L. M., 1976, Some properties of phospholipid exchange proteins from rat liver. Eur. J. Biochem. 69:15–22.PubMedCrossRefGoogle Scholar
  45. Lumb, R. H., Cottle, D. A., White, L. C., Hoyle, S. N., Pool, G. L., and Brumley, G. W., 1980, Lung phosphotidylcholine transfer in six vertebrate species. Correlations with surfactant parameters, Biochim. Biophys. Acta 620:172–175.PubMedGoogle Scholar
  46. Machida, K., and Ohnishi, S., 1978, A spin-label study of phosphatidylcholine exchange protein. Regulation of the activity by phosphatidylserine and calcium ion, Biochim. Biophys. Acta 507:156–164.PubMedCrossRefGoogle Scholar
  47. Machida, K., and Ohnishi, S., 1980, Effect of bilayer membrane curvature on activity of phosphatidylcholine exchange protein, Biochim. Biophys. Acta 596:201–209.PubMedCrossRefGoogle Scholar
  48. Manavalan, P., and Ponnuswamy, P. K., 1978, Hydrophobic character of amino acid residues in globular proteins, Nature (London) 275:673–674.CrossRefGoogle Scholar
  49. Martin, F. J., and MacDonald, R. C., 1976, Phospholiid exchange between bilayer membrane vesicles, Biochemistry 15:321–327.PubMedCrossRefGoogle Scholar
  50. McLean, L. R., and Phillips, M. C., 1981, Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles, Biochemistry 20:2893–2900.PubMedCrossRefGoogle Scholar
  51. McMurray, W. C., and Dawson, R. M. C., 1969, Phospholipid exchange reactions within the liver cell, Biochem. J. 12:91–108.Google Scholar
  52. Moonen, P., Haagsman, H. P., Van Deenen, L. L. M., and Wirtz, K. W. A., 1979, Determination of the hydrophobic binding site of phosphatidylcholine exchange protein with photosensitive phosphatidylcholine, Eur. J. Biochem. 99:439–445.PubMedCrossRefGoogle Scholar
  53. Moonen, P., Akeroyd, R., Westerman, J., Puyk, W. C., Smits, P., and Wirtz, K. W. A., 1980, The primary structure of the phosphatidylcholine exchange protein from bovine liver. Isolation and characterization of the staphylococcal protease peptides and the amino acid sequence of the N-terminal half (residues 11-122), Eur. J. Biochem. 106:279–290.PubMedCrossRefGoogle Scholar
  54. Nichols, J. W., and Pagano, R. E., 1981, Kinetics of soluble lipid monomer diffusion between vesicles, Biochemistry 20:2783–2789.PubMedCrossRefGoogle Scholar
  55. Nozaki, Y., and Tanford, C., 1971, The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions, J. Biol. Chem. 246:2211–2217.PubMedGoogle Scholar
  56. Ponnuswamy, P. K., Prabhakaran, M., and Manavalan, P., 1980, Hydrophobic packing and spatial arrangement of amino acid residues in globular proteins, Biochim. Biophys. Acta 623:301–316.PubMedGoogle Scholar
  57. Poorthuis, B. J. H. M., Van der Krift, T. P., Teerlink, T., Akeroyd, R., Hostetler, K. Y., and Wirtz, K. W. A., 1980, Phospholipid transfer activities in Morris hepatomas and the specific contributions of the phosphatidylcholine exchange protein, Biochim. Biophys. Acta 600:376–386.PubMedCrossRefGoogle Scholar
  58. Post, M., Batenburg, J. J., Schuurmans, E. A. J. M., and Van Golde, L. M. G., 1980, Phospholipid- transfer activity in type II cells isolated from adult rat lung, Biochim. Biophys. Acta 620:317–321.PubMedGoogle Scholar
  59. Reynolds, J. A., 1982, Interaction between proteins and amphiphiles, in:Lipid-Protein Interactions, Vol. 2 ( P. C. Jost and O. H. Griffith, eds.), Wiley-Interscience, New York, pp. 193–224.Google Scholar
  60. Robinson, M. E., Wu, L. N. Y., Brumley, G. W., and Lumb, R. H., 1978, A unique phosphatidylcholine exchange protein isolated from sheep lung, FEBS Lett. 87:41–44.PubMedCrossRefGoogle Scholar
  61. Robson, R. J., Radhakrishnan, R., Ross, A. H., Takagaki, Y., and Khorana, H. G., 1982, Photochemical cross-linking in studies of lipid-protein interactions, in:Lipid-Protein Interactions, Vol. 2 ( P. C. Jost and O. H. Griffith, eds.), Wiley-Interscience, New York, pp. 149–192.Google Scholar
  62. Rose, G. D., 1978, Prediction of chain turns in globular proteins on a hydrophobic basis, Nature (London) 272:586–590.CrossRefGoogle Scholar
  63. Rose, G. D., and Roy, S., 1980, Hydrophobic basis of packing in globular proteins, Proc. Natl. Acad. Sci. USA 77:4643–4647.PubMedCrossRefGoogle Scholar
  64. Roseman, M. A., and Thompson, T. E., 1980, Mechanism of the spontaneous transfer of phospholipids between bilayers, Biochemistry 19:439–444.PubMedCrossRefGoogle Scholar
  65. Rothman, J. E., and Dawidowicz, E. A., 1975, Asymmetric exchange of vesicle phospholipids catalyzed by the phosphatidylcholine exchange protein. Measurement of inside-outside transitions, Biochemistry 14:2809–2816.PubMedCrossRefGoogle Scholar
  66. Sasaki, T., and Sakagami, T., 1978, A new assay system of phospholipid exchange activities using concanavalin A in the separation of donor and acceptor liposomes, Biochim. Biophys. Acta 512:461–471.PubMedCrossRefGoogle Scholar
  67. Schulz, G. E., and Schirmer, R. H., 1979, Patterns of folding and association of polypeptide chains, in:Principles of Protein Structure ( C. R. Cantor, ed.), Springer-Verlag, Heidelberg, pp. 66–165.Google Scholar
  68. Stein, O., and Stein, Y., 1969, Lecithin synthesis, intracellular transport and secretion in rat liver, J. Cell Biol. 40:461–483.PubMedCrossRefGoogle Scholar
  69. Sternberg, M. J. E., and Thornton, J. M., 1978, Prediction of protein structure from amino acid sequence, Nature 271:15–20.PubMedCrossRefGoogle Scholar
  70. Tanaka, T., and Yamada, M., 1979, A phosphatidylcholine exchange protein isolated from germinated castor bean endosperms, Plant Cell Physiol. 20:533–542.Google Scholar
  71. Teerlink, T., Poorthuis, B. J. H. M., Van der Krift, T. P., and Wirtz, K. W. A., 1981, Measurement of phosphtidylcholine transfer protein in rat liver and hepatomas by radio-immunoassay, Biochim. Biophys. Acta 665:74–80.PubMedGoogle Scholar
  72. Teerlink, T., Van der Krift, T. P., Post, M., and Wirtz, K. W. A., 1982, Tissue distribution and subcellular localization of phosphatidylcholine transfer protein in rats as determined by radio-immunoassay, Biochim. Biophys. Acta 713:61–67.PubMedGoogle Scholar
  73. Tsao, F. H. C., 1980, Specific transfer of dipalmitoyl phosphatidylcholine in rabbit lung, Biochim. Biophys. Acta 601:415–426.PubMedCrossRefGoogle Scholar
  74. Van den Besselaar, A. M. H. P., Helmkamp, G. M., and Wirtz, K. W. A., 1975, Kinetic model of the protein-mediated phosphatidylcholine exchange between single bilayer liposomes, Biochemistry 14:1852–1858.PubMedCrossRefGoogle Scholar
  75. Van Golde, L. M. G., Raben, J., Batenburg, J. J., Fleischer, B., Zambrano, F., and Fleischer, S., 1974, Biosynthesis of lipids in Golgi complex and other subcellular fractions from rat liver, Biochim. Biophys. Acta 360:179–192.PubMedGoogle Scholar
  76. Van Golde, L. M. G., Oldenborg, V., Post, M., Batenburg, J. J., Poorthuis, B. J. H. M., and Wirtz, K. W. A., 1980, Phospholipid transfer proteins in rat lung:Identification of a protein specific for phosphatidylglycerol, J. Biol. Chem. 255:6011–6013.PubMedGoogle Scholar
  77. Voelker, D. R., and Kennedy, E. P., 1982, Cellular and enzymic synthesis of sphingomyelin, J. Biol. Chem. 21:2753–2759.Google Scholar
  78. Westerman, J., Kamp, H. H., and Wirtz, K. W. A., 1983a, Phosphatidylcholine transfer protein from bovine liver, in:Methods in Enzymology, Vol. 98. ( S. Fleischer and B. Fleischer, eds.), Academic Press, New York, pp. 581–586.Google Scholar
  79. Westerman, J., Wirtz, K. W. A., Berkhout, T., Van Deenen, L. L. M., Radhakrishnan, R., and Khorana, H. G., 1983b, Identification of the lipid binding site of phosphatidylcholine transfer protein with phosphatidylcholine analogs containing photoactivable carbene precursors, Eur. J. Biochem., 132:441–449.PubMedCrossRefGoogle Scholar
  80. Wilgram, G. F., and Kennedy, E. P., 1963, Intracellular distribution of some enzymes catalyzing reactions in the biosynthesis of complex lipids, J. Biol. Chem. 238:2615–2619.PubMedGoogle Scholar
  81. Wilson, D. B., Ellsworth, J. L., and Jackson, R. L., 1980, Net transfer of phosphatidylcholine from plasma low density lipoproteins to sphingomyelin-apolipoprotein A-II complexes by bovine liver and human plasma phospholipid exchange proteins, Biochim. Biophys. Acta 620:550–561.PubMedGoogle Scholar
  82. Wirtz, K. W. A., 1982, Phospholipid transfer proteins, in:Lipid-Protein Interactions, Vol. 1 ( P. C. Jost and O. H. Griffith, eds.), Wiley-Interscience, New York, pp. 151–231.Google Scholar
  83. Wirtz, K. W. A., and Moonen, P., 1977, Interaction of the phosphatidylcholine exchange protein with phospholipids. A fluorescence and circular dichroism study, Eur. J. Biochem. 77:437–443.PubMedCrossRefGoogle Scholar
  84. Wirtz, K. W. A., and Zilversmit, D. B., 1968, Exchange of phospholipids between liver mitochondria and microsomes in vitro, J. Biol. Chem. 243:3596–3602.Google Scholar
  85. Wirtz, K. W. A., and Zilversmit, D. B., 1969, The use of phenobarbital and carbon tetrachloride to examine liver phospholipid exchange in intact rats, Biochim. Biophys. Acta 187:468–476.PubMedGoogle Scholar
  86. Wirtz, K. W. A., Geurts van Kessel, W. S. M., Kamp, H. H., and Demel, R. A., 1976, The protein- mediated transfer of phosphatidylcholine between membranes. The effect of membrane lipid composition and ionic composition of the medium, Eur. J. Biochem. 61:515–523.PubMedCrossRefGoogle Scholar
  87. Wirtz, K. W. A., Vriend, G., and Westerman, J., 1979, Kinetic analysis of the interaction of the phosphatidylcholine exchange protein with unilamellar vesicles and multi-lamellar liposomes, Eur. J. Biochem. 94:215–221.PubMedCrossRefGoogle Scholar
  88. Wirtz, K. W. A., Devaux, P. F., and Bienvenue, A., 1980a, Phosphatidylcholine exchange protein catalyzes the net transfer of phosphatidylcholine to model membranes, Biochemistry 19:3395–3399.PubMedCrossRefGoogle Scholar
  89. Wirtz, K. W. A., Moonen, P., Van Deenen, L. L. M., Radhakrishnan, R., and Khorana, H. G., 1980b, Identification of the lipid binding site of the phosphatidylcholine exchange protein with a photosensitive nitrene and carbene precursor of phosphatidylcholine, Ann. N.Y. Acad. Sci. 348:244–255.PubMedCrossRefGoogle Scholar
  90. Wolfenden, R., Andersson, L., Cullis, P. M., and Southgate, C. C. B., 1981, Affinity of amino acid side chains for solvent water, Biochemistry 20:849–855.PubMedCrossRefGoogle Scholar
  91. Yamada, K., Sasaki, T., and Sakagami, T., 1978, Separation and purification of phospholipid exchange proteins in rat small intestinal mucosa, J. Biochem. 84:855–863.PubMedGoogle Scholar
  92. Yoshioka, M., Lifter, J., Hew, C. L., Converse, C. A., Armstrong, M. Y. K., Konigsberg, W. H., and Richards, F. F., 1973, Studies on the combining region of protein 460, a mouse γA immunoglobulin which binds several haptens. Binding and reactivity of two types of photoaffinity labeling reagents, Biochemistry 12:4679–4685.PubMedCrossRefGoogle Scholar
  93. Zborowski, J., and Demel, R. A., 1982, Transfer properties of the bovine brain phospholipid transfer protein. Effect of charged phospholipids and of phosphatidylcholine fatty acid composition, Biochim. Biophys. Acta 688:381–387.PubMedCrossRefGoogle Scholar
  94. Zilversmit, D. B., and Hughes, M. E., 1976, Phospholipid exchange between membranes, in:Methods in Membrane Biology, Vol. 7 ( E. D. Korn, ed.), Plenum Press, New York, pp. 211–259.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Karel W. A. Wirtz
    • 1
  • Tom Teerlink
    • 1
  • Rob Akeroyd
    • 1
  1. 1.Laboratory of BiochemistryState University of Utrecht, University Centre “De Uithof,”UtrechtThe Netherlands

Personalised recommendations