Advertisement

Migmatites pp 36-85 | Cite as

The significance of experimental studies for the formation of migmatites

  • W. Johannes

Keywords

Partial Melting Granitic Rock Solidus Temperature Parent Rock Equilibrium Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, R.N. and Clarke, D.B. (1979) Hypothetical liquidus relationships in the subsystem Al2O3–FeO–MgO projected from quartz, alkali feldspar and plagioclase for a (H2O) ≤ 1. Can. Miner. 17, 549–560.Google Scholar
  2. Ashworth, J.R. (1976) Petrogenesis of migmatites in the Huntly-Portsoy area, north-east Scotland. Mineral Mag. 40, 661–682.CrossRefGoogle Scholar
  3. Ashworth, J.R. (1979) Textural and mineralogical evolution of migmatites. In The Caledonides of the British Isles—Reviewed, eds. Harris, A.L., Holland, C.H. and Leake, B.E., Spec. Publ. Geol Soc. Lond. 8, 357–361.Google Scholar
  4. Boettcher, A.L. (1970) The system Ca0–Al2O3–SiO2–H2O at high pressures and temperatures. J. Petrol 11, 337–379.Google Scholar
  5. Boettcher, A.L. and Wyllie, P.J. (1968) Jadeite stability measured in the presence of silicate liquids in the system NaAlSiO4–SiO2–H2O. Geochim. Cosmochim. Acta 32, 999–1012.CrossRefGoogle Scholar
  6. Bowen, N.L. (1913) The melting phenomena of the plagioclase feldspars. Am. J. Sci. 35, 577–599.CrossRefGoogle Scholar
  7. Brady, J.H. and Yund, R.A. (1983) Interdiffusion of K and Na in alkali feldspars: Homogenization experiments. Am. Miner. 68, 106–111.Google Scholar
  8. Brown, M. (1983) The petrogenesis of some migmatites from the Presqu’ile de Rhuys, southern Brittany, France. In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D., Shiva, Nantwich, 174–200.Google Scholar
  9. Burnham, C.W. (1981) The nature of multicomponent aluminosilicate melts. Phys. Chem. Earth 13 +14, 197–226.Google Scholar
  10. Büsch, W., Schneider, G. and Mehnert, K.R. (1974) Initial melting at grain boundaries part II: Melting in rocks of granodioritic, quartzdioritic and tonalitic composition. Neues Jb. Miner. Mh. 345–370.Google Scholar
  11. Chatterjee, N.D. (1974) Crystal-liquid-vapour equilibria involving paragonite in the system NaAlSi3O8–Al2O3–Si02–H2O. Indian J. Earth Sci. 1, 3–11.Google Scholar
  12. ChristofTersen, R., Yund, R.A. and Tullis, J. (1983) Inter–diffusion of K and Na in alkali feldspars: diffusion couple experiments. Am. Miner. 68, 1126–1133.Google Scholar
  13. Eberhard, E. (1967) Zur Synthese der Plagioklase. Schweiz. Miner. Petrogr. Mitt. 47, 385–398.Google Scholar
  14. Eberhard, E. (1967) Zur Synthese der Plagioklase. Schweiz. Miner. Petrogr. Mitt. 47, 385–398.Google Scholar
  15. Giletti, B.J., Semet, M.P. and Yund, R.A. (1978) Studies in diffusion–Ill. Oxygen in feldspars: anion microprobe determination. Geochim. Cosmochim. Acta 42, 45–57.CrossRefGoogle Scholar
  16. Goldsmith, J.R. (1982) Plagioclase stability at elevated temperatures and water pressures. Am. Miner. 67, 653–675.Google Scholar
  17. Grove, T.L, Ferry, J.M. and Spear, F.S. (1983) Phase transitions and decomposition relations in calcic plagioclase. Am. Miner. 68, 41–59.Google Scholar
  18. Gupta, L.N. and Johannes, W. (1982) Petrogenesis of a stromatic migmatite (Nelaug, Southern Norway). J. Petrol 23, 548–567.Google Scholar
  19. Harris, N.B.W. (1974) Some migmatite types and their origins, from the Barousse Massif, Central Pyrenees. Geol Mag. 111, 319–328.CrossRefGoogle Scholar
  20. Henkes, L. and Johannes, W. (1981) The petrology of a migmatite (Arvika, Varmland, western Sweden). Neues Jb. Miner. Abh. 141, 113–133.Google Scholar
  21. Hoschek, G. (1976) Melting relations of biotite + plagioclase + quartz. Neues Jb. Miner. Mh. 79–83.Google Scholar
  22. Huang, W.L. and Wyllie, P.J. (1974) Melting relations of muscovite with quartz and sanidine in the K2O–Al2O3–SiO2–H2O system to 30 kilobars and an outline of paragonite melting relations. Am. J. Sci. 274, 378–395.CrossRefGoogle Scholar
  23. Huang, W.L. and Wyllie, P.J. (1975) Melting reactions in the system NaAlSi3O8–KAlSi3O8–SiO2 to 35 kilobars, dry and with excess water. J. Geol. 83, 737–748.CrossRefGoogle Scholar
  24. Johannes, W. (1978) Melting of plagioclase in the system Ab–An–H2O and Qz–Ab–An–H2O at PH2O = 5 kbars, an equilibrium problem. Contrib. Miner. Petrol. 66, 295–303.CrossRefGoogle Scholar
  25. Johannes, W. (1979) Ternary feldspars: Kinetics and possible equilibria at 800 °C. Contrib. Miner. Petrol. 68, 221–230.CrossRefGoogle Scholar
  26. Johannes, W. (1980) Metastable melting in the granite system Qz–0r–Ab–An–H20. Contrib. Miner. Petrol. 72, 73–80.CrossRefGoogle Scholar
  27. Johannes, W. (1983a) Metastable melting in the granite and related systems. In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D., Shiva, Nantwich, 27–36.Google Scholar
  28. Johannes, W. (1983ft) On the origin of stromatic (layered) migmatites. In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D., Shiva, Nantwich, 234–248.Google Scholar
  29. Johannes, W. (1984) Beginning of melting in the granite system Qz–0r–Ab–An–H20. Contrib. Miner. Petrol. 86, 264–273.CrossRefGoogle Scholar
  30. Johannes, W. and Gupta, L.N. (1982) Origin and evolution of a migmatite. Contrib. Miner. Petrol. 79, 114–123.CrossRefGoogle Scholar
  31. Jurewicz, S.R. and Watson, E.B. (1984) Distribution of partial melt in a felsic system: the importance of surface energy. Contrib. Miner. Petrol. 85, 25–29.CrossRefGoogle Scholar
  32. Kenah, C. and Hollister, L.S. (1983) Anatexis in the Central Gneiss Complex, British Columbia. In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D., Shiva, Nantwich, 142–162.Google Scholar
  33. Kilinc, I.A. (1979) Melting relations in the quartz diorite–H20 and quartz diorite–H2O–CO2 systems. Neues Jb. Miner. Mh. 62–72.Google Scholar
  34. Luth, W.C., Jahns, R.H. and Tuttle, O.F. (1964) The granite system at pressures of 4 to 10 kilobars. J. Geophys. Res. 69, 759–773.CrossRefGoogle Scholar
  35. MaalØe, S. and Wyllie, P.J. (1975) Water content of a granite magma deduced from the sequence of crystallisation determined experimentally with water-undersaturated conditions. Contrib. Miner. Petrol. 52, 175–191.CrossRefGoogle Scholar
  36. Manning, D.A.C. (1981) The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb. Contrib. Miner. Petrol. 76, 206–215.CrossRefGoogle Scholar
  37. Matthews A., Goldsmith, J.R. and Clayton, R.N. (1983) On the mechanisms and kinetics of oxygen isotope exchange in quartz and feldspars at elevated temperatures and pressures. Geol. Soc. Am. Bull. 94, 396–412.CrossRefGoogle Scholar
  38. McLellan, E.L. (1983) Contrasting textures in metamorphic and anatectic migmatites: anexample from the Scottish Caledonides. J. Metamorphic Geol. 1, 241–262.CrossRefGoogle Scholar
  39. Mehnert, K.R. (1951) Zur Frage des Stoffhaushalts anatektischer Gesteine. Neues Jb. Miner. Abh. 82, 155–198.Google Scholar
  40. Mehnert, K.R. (1968) Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam. Mehnert, K.R. and Busch, W. (1982) The initial stage of migmatite formation. Neues Jb. Miner. Abh. 145, 211–238.Google Scholar
  41. Mehnert, K.R. Busch, W. and Schneider, G. (1973) Initial melting at grain boundaries of quartz and feldspars in gneisses and granulites. Neues Jb. Miner. Mh. 165–183.Google Scholar
  42. Merrill, R.B., Robertson, J.K. and Wyllie, P.J. (1970) Melting reactions in the system NaAlSi3Os– KAlSi3O8–SiO2–H2O to 20 kilobars compared with results for other feldspar–quartz–H2O and rock–H2O systems. J. Geol. 78, 558–569.CrossRefGoogle Scholar
  43. Misch, P. (1968) Plagioclase compositions and non-anatectic origin of migmatitic gneisses in Northern Cascade Mountains of Washington State. Contrib. Miner. Petrol. 17, 1–70.CrossRefGoogle Scholar
  44. Muehlenbachs, K. and Kushiro, I. (1974) Oxygen isotope exchange and equilibrium of silicates with CO2 or O2. Yb. Carnegie Instn Wash. 73, 232–236.Google Scholar
  45. Naney, M.T. (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am. J. Sci. 283, 993–1033.CrossRefGoogle Scholar
  46. Nord, G.L., Heuer, A.H. and Lally, J.S. (1974) Transmission electron microscopy of substructures in Stillwater bytownites. In The Feldspars, eds. MacKenzie, W.S. and Zussman, J., Manchester University Press, Manchester, 522–535.Google Scholar
  47. Olsen, S.N. (1984) Mass-balance and mass-transfer in migmatites from the Colorado Front Range. Contrib. Miner. Petrol. 85, 30–44.CrossRefGoogle Scholar
  48. Orville, P.M. (1963) Alkali ion exchange between vapor and feldspar phases. Am. J. Sci. 261, 201–237.CrossRefGoogle Scholar
  49. Orville, P.M. (1972) Plagioclase cation exchange equilibria with aqueous chloride solution: Results at 700 °C and 2000 bars in the presence of quartz. Am. J. Sci. 272, 234–272.CrossRefGoogle Scholar
  50. Pichavant, M. (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapour pressure. Contrib. Miner. Petrol. 76, 430–439.CrossRefGoogle Scholar
  51. Piwinskii, A.J. (1967) The attainment of equilibrium in hydrothermal experiments with granitic rocks. Earth Planet. Sci. Lett. 2, 161–162.CrossRefGoogle Scholar
  52. Piwinskii, A.J. (1968) Experimental studies of igneous rock series: Central Sierra Nevada batholith, California. J. Geol. 76, 548–570.CrossRefGoogle Scholar
  53. Piwinskii, A.J. (1973) Experimental studies of granitoids from the Central and Southern Coast Ranges, California. Tschermaks Miner. Petrogr. Mitt. 20, 107–130.CrossRefGoogle Scholar
  54. Piwinskii, A.J. and Martin, R.F. (1970) An experimental study of equilibrium with granitic rocks at 10 kb. Contrib. Miner. Petrol. 29, 1–10.CrossRefGoogle Scholar
  55. Piwinskii, A.J. and Wyllie, P.J. (1968) Experimental studies of igneous rock series: a zoned pluton in the Wallowa batholith. Oregon. J. Geol. 76, 205–234.Google Scholar
  56. Piwinskii, A.J. and Wyllie, P.J. (1970) Experimental studies of igneous rock series: ‘Felsic Body Suite’ from the Needle Point pluton, Wallowa batholith, Oregon. J. Geol. 78, 52–76.Google Scholar
  57. Robertson, J.K. and Wyllie, P.J. (1971) Experimental studies on rocks from the Deboullie stock, northern Maine, including melting relations in the water-deficient environment. J. Geol. 79, 549–571.CrossRefGoogle Scholar
  58. Schairer, J.F. and Bowen, N.L. (1955) The system K2O–Al2O3–SiO2. Am. J. Sci. 253, 681–746.CrossRefGoogle Scholar
  59. Schairer, J.F. and Bowen, N.L. (1955) The system K2O–Al2O3–SiO2. Am. J. Sci. 253, 681–746.CrossRefGoogle Scholar
  60. Steiner, J.C., Jahns, R.H. and Luth, W.C. (1975) Crystallization of alkali feldspar and quartz in the haplogranite system NaAlSi3O8–KAlSi3O8–SiO2–H2O at 4kb. Geol. Soc. Am. Bull. 86, 83–98.CrossRefGoogle Scholar
  61. Stewart, D.B. (1967) Four phase curve in the system CaAl2–Si2O8–SiO2–H2O between 1 and 10 kilobars. Schweiz. Miner. Petrogr. Mitt. 47, 35–39.Google Scholar
  62. Thompson, A.B. (1974) The instability of feldspar in metamorphism. In The Feldspars, eds. MacKenzie, W.S. and Zussman, J., Manchester University Press, Manchester, 645–672.Google Scholar
  63. Thompson, A.B. and Algor, J.R. (1977) Model systems for anatexis of pelitic rocks I. Theory of melting reactions in the system KA1O2–NaA1O2–Al2O3–SiO2–H2O. Contrib. Miner. Petrol. 63, 247–269.CrossRefGoogle Scholar
  64. Thompson, A.B. and Tracy, R.J. (1979) Model systems for anatexis of pelitic rocks II. Facies series melting and reactions in the system CaO–KA1O2–NaA1O2–Al2O3–SiO2–H2O. Contrib. Miner. Petrol 70, 429–438.CrossRefGoogle Scholar
  65. Touret, J. (1981) Fluid inclusions in high grade metamorphic rocks. Min. Soc. Canada Short Course Handbook. 6, 182–208.Google Scholar
  66. Tracy, R.J. (1978) High grade metamorphic reactions and partial melting in pelitic schist, West Central Massachusetts. Am. J. Sci. 278, 150–178.CrossRefGoogle Scholar
  67. Tsuchiyama, A. and Takahashi, E. (1983) Melting kinetics of a plagioclase feldspar. Contrib, Miner. Petrol 84, 345–354.CrossRefGoogle Scholar
  68. Tuttle, O.F. and Bowen, N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc. Am. Mem. 74.Google Scholar
  69. van der Molen, I. and Paterson, M.S. (1979) Experimental deformation of partially–melted granite. Contrib. Miner. Petrol 70, 299–318.CrossRefGoogle Scholar
  70. Viswanathan, K. (1972) Kationenaustausch an Plagioklasen. Contrib. Miner. Petrol 37, 277– 290.CrossRefGoogle Scholar
  71. von Platen, H. (1965) Kristallisation granitischer Schmelzen. Beitr. Miner. Petrologie 11, 334–381.CrossRefGoogle Scholar
  72. White, A. J.R. (1966) Genesis of migmatites from the Palmer region of South Australia. Chem. Geol 1, 165–200.CrossRefGoogle Scholar
  73. Whitney, J.A. (1975) The effects of pressure, temperature and Xll20 on phase assemblage in four synthetic rock compositions. J. Geol 83, 1–31.CrossRefGoogle Scholar
  74. Winkler, H.G.F. (1961) Die Genese von Graniten und Migmatiten auf Grund neuer Experimente. Geol Rdsch. 61, 347–364.Google Scholar
  75. Winkler, H.G.F. (1976) Petrogenesis of Metamorphic Rocks. 4th edn., Springer–Verlag, New York etc.Google Scholar
  76. Winkler, H.G.F. (1979) Petrogenesis of Metamorphic Rocks. 5th edn., Springer–Verlag, New York etc.Google Scholar
  77. Winkler, H.G.F. and Breitbart, R. (1978) New aspects of granitic magmas. Neues Jb. Miner. Mh. 463–480.Google Scholar
  78. Winkler, H.G.F. and Lindemann, W. (1972) The system Qz–0r–An–H2O within the granitic system Qz–0r–Ab–An–H2O. Application to granitic magma formation. Neues Jb Miner. Mh. 49–61.Google Scholar
  79. Winkler, H.G.F. and von Platen, H. (1961) Experimentelle Gesteinsmetamorphose IV. Bildung anatektischer Schmelzen aus metamorphisierten Grauwacken. Geochim. Cosmochim. Acta 24, 48–69.CrossRefGoogle Scholar
  80. Winkler, H.G.F., Boese, M. and Marcopoulos, T. (1975) Low temperature granitic melts. Neues Jb. Miner. Mh. 245–268.Google Scholar
  81. Wyllie, P.J. (1977) From crucibles through subduction to batholiths. In Energetics of Geological Processes, eds. Saxena, S.K. and Bhattacharji, S., Springer-Verlag, New York, etc., 389–433.Google Scholar
  82. Wyllie, P.J. and Tuttle, O.F. (1964) Experimental investigation of silicate systems containing two volatile components. Part III. The effects of SO3, P2O5, HCl, and Li2O, in addition to H2O on the melting temperatures of albite and granite. Am. J. Sci. 262, 930–939.CrossRefGoogle Scholar
  83. Yoder, H.S. (1968) Albite–anorthite–quartz–water at 5 kb. Yb. Carnegie Instn Wash. 66, 477–478.Google Scholar

Copyright information

© Blackie & Son Ltd 1985

Authors and Affiliations

  • W. Johannes
    • 1
  1. 1.Institut für Kristallographie and PetrographieUniversität HannoverHannover 1Deutschland

Personalised recommendations