Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 47))

  • 47 Accesses

Abstract

The development of cellular drug resistance seems a unique characteristic of cancerous tissues. In addition, drug resistant cancer cells often express cross resistance to other structurally unrelated anticancer agents. In order to elucidate the etiology of drug resistance, many possible mechanisms have been proposed and examined, including the development of a membrane barrier (1, 2, 3, 4), gene amplification (5, 6, 7), enhanced drug degradation (8), loss of drug activation ability (9), repair of DNA damage (10, 11) and other genetic or epigenetic possibilities (12, 13, 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biedler JL, Riehm H: Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic and cytogenetic studies. Cancer Res. 30: 1174–1184, 1970.

    PubMed  CAS  Google Scholar 

  2. Johnson DM, Newby R, Bourgeois S: Membrane permeability as a determinant of dexamethasone resistance in murine thymoma cells. Cancer Res. 44: 2435–2440, 1984.

    PubMed  CAS  Google Scholar 

  3. Carlson SA, Till JE, Ling V: Modulation of drug permeability in Chinese hamster ovary cells. Possible role for phosphorylation of surface glycoproteins. Biochim. Biophys. ACTA 467: 238–250, 1977.

    Google Scholar 

  4. Ling V, Thompson LH: Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 83: 103–116, 1973.

    Article  Google Scholar 

  5. Biedler JL, Chang TD, Peterson HF et al: Gene amplification and phenotypic instability in drug-resistant and revertant cells. In: Rational Basis for Chemotherapy, Chabner BA (ed), Alan R. Liss, Inc., pp. 71–92, 1983.

    Google Scholar 

  6. Baskin F, Rosenberg RN, Dev V: Correlation of double minute chromosomes with unstable multidrug cross-resistance in uptake mutants of neuroblastoma cells. Proc. Natl. Acad. Sci. 78: 3654–3658, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Robinson IB, Abelson HT, Housman DE et al: Amplification of specific DNA sequences correlates with multi-drug resistance in Chinese hamster cells. Nature 309: 626–628, 1984.

    Article  Google Scholar 

  8. Akiyama SI, Ikezaki K, Kuramochi H, et al: Bleomycin-resistant cells contain increased bleomycin-hydrolase activities. Biochem. Biophys. Res. Commun. 101: 55–60, 1981.

    Google Scholar 

  9. Mungikar A, Chitnis M, Gothoskar B: Mixed-function oxidase enzymes in adriamycin sensitive and resistant sublines of P388 leukemia. Chem Biol. Inter. 35: 119–124, 1981.

    Article  CAS  Google Scholar 

  10. Chou TH, Yost C: Adriamycin resistance in murine leukemia P388 cells and increased DNA repair. Proc. Amer. Assoc. Cancer Res. 26: 217, 1985.

    Google Scholar 

  11. Long BH, Musial ST, Newhouse LA, Brattain MG: Resistance to VP-16-213 and VM-26 is localized to nuclei of resistant human lung and colon carcinoma cell lines. Proc. Amer. Assoc. Cancer Res. 26: 348, 1985.

    Google Scholar 

  12. Taylor RF, Teague LA, Yesair DW: Drug-binding macromolecular lipids from L1210 leukemia tumors. Cancer Res. 41: 4316–4323, 1982.

    Google Scholar 

  13. Guffy MM, North JA, Burns CP: Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 44: 1863–1866, 1984.

    PubMed  CAS  Google Scholar 

  14. Bachur NR, Gee MV: Micromosomal reductive glycosidase. J. Pharmacol. Exp. Ther. 197: 681–686, 1976.

    PubMed  CAS  Google Scholar 

  15. Kessel D, Wodinsky I: Uptake in vivo and in vitro of actinomycin D by mouse leukemias as factors in survival. Biochem. Pharmacol. 17: 161–164, 1968.

    Article  PubMed  CAS  Google Scholar 

  16. Dane K: Active outward transport of daunorubicin in resistant Ehrlich ascites tumor cells. Biochim. Biophys. ACTA 323: 466–483, 1973.

    Article  Google Scholar 

  17. Skovsgaard T: Circumvention of resistance to daunorubicin by N-acetyldaunorubicin in Ehrlich ascites tumor. Cancer Res. 40: 1077–1081, 1980.

    PubMed  CAS  Google Scholar 

  18. Richman SP, Lalley K, Kiefer S, Woodcock TM: Effect of prochloroperazine on doxorubicin content and cytotoxicity in K562 cells. Proc. Amer. Assoc. Cancer Res. 26: 338, 1985.

    Google Scholar 

  19. Inaba M, Kobayashi H, Sakurai Y, Johnson RK: Active efflux of daunorubicin and adriamycin in sensitive and resistant sublines of P388 leukemia. Cancer Res. 39: 2695–2710, 1970.

    Google Scholar 

  20. Inaba M, Johnson RK: Uptake and retention of adriamycin and daunorubicin by sensitive and anthracycline-resistant sublines of P388 leukemia. Biochem. Pharmacol. 27: 2123–2130, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Kessel D, Wheeler C, Chou TH et al: Studies on a mode of resistance of m-AMSA. Biochem. Pharmacol. 31: 3008–3010, 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Riehm H, Biedler JL: Potentiation of drug effect by tween 80 in Chinese hamster cells resistant to actinomycin D and daunorubicin. Cancer Res. 32: 1195–1200, 1972.

    PubMed  CAS  Google Scholar 

  23. Tsuruo T, Iida H, Nojiri M et al: Circumvention of vincristine and adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 43: 2905–2910, 1983.

    PubMed  CAS  Google Scholar 

  24. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y: Increased accumulation of vincristine and adriamycin in drug resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res. 42: 4730–4733, 1982.

    PubMed  CAS  Google Scholar 

  25. Tsuruo T, Iida H, Kitatani Y et al: Effects of Quinidine and related compounds on cytotoxicity and cellular accumulation of vincristine and adriamycin in drug resistant tumor cells. Cancer Res. 44: 4303–4307, 1984.

    PubMed  CAS  Google Scholar 

  26. Yanovich S, Gewirtz D: Involvement of calcium in the enhancement of daunorubicin accumulation in P388 leukemia cells by verapamil and Ca ionophore A23187. Proc. Amer. Assoc. Cancer Res. 25: 305, 1984.

    Google Scholar 

  27. Ganapathi R, Grabowski D, Hewlett JS: Reversal of adriamycin resistance in P388 leukemia by the calmodulin inhibitor trifluoperazine. Proc. Amer. Assoc. Cancer Res. 23: 1109, 1983.

    Google Scholar 

  28. Ramu A, Fuks Z, Gatt S, Glaubiger D: Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by perhexiline. Cancer Res. 44: 144–148, 1984.

    PubMed  CAS  Google Scholar 

  29. Inaba M, Fujikura R, Tsukagoshi S, Sakurai Y: Restored in vitro sensitivity of adriamycin-and vincristine-resistant P388 leukemia with reserpine. Biochem. Pharmacol. 30: 2129–2194, 1981.

    Article  Google Scholar 

  30. Klohs WD, Steinkampf RW, Havlick MJ, Jackson RC: Potentiation of anthrapyrazole and anthracycline cytotoxicity by calcium channel blockers in pleiotropic drug resistant P388 cells. Proc. Amer. Assoc. Cancer Res. 26: 339, 1985.

    Google Scholar 

  31. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y: Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41: 1967–1972, 1981.

    PubMed  CAS  Google Scholar 

  32. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y: Cure of mice bearing P388 leukemia by vincristine in combination with a calcium channel blocker. Cancer Treat. Rep. 69: 523–525, 1985.

    PubMed  CAS  Google Scholar 

  33. Presant CA, Kennedy P, Wiseman C et al: Verapamil plus adriamycin—a Phase I-II clinical study. Proc. Amer. Soc. Clin. Oncol. 3: 32, 1984.

    Google Scholar 

  34. Ozols RF, Rogan AM, Hamilton TC et al: Verapamil plus adriamycin in refractory ovarian cancer: Design of a clinical trial on basis of reversal of ADR resistance in human OC cell lines. Proc. Amer. Assoc. Cancer Res. 25: 300, 1984.

    Google Scholar 

  35. Juliano RL, Ling, V: A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. ACTA 455: 152–162, 1976.

    Article  PubMed  CAS  Google Scholar 

  36. Kartner N, Riordan JR, Ling V: Cell surface p-glycoprotein associated with mutidrug resistance in mammalian cell lines. Science 221: 1285–1288, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Chou, Th. (1986). Modulation of the Efflux of Anticancer Agents. In: Valeriote, F.A., Baker, L.H. (eds) Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches. Developments in Oncology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2331-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2331-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9432-0

  • Online ISBN: 978-1-4613-2331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics