Skip to main content

Recovery of Cardiac Activity—The T-Wave and Ventricular Gradient

  • Chapter
Pediatric and Fundamental Electrocardiography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 56))

Abstract

Repolarization begins immediately following the depolarization of each cardiac cell. Since the activation of each cell is initiated at a slightly different time, repolarization correspondingly begins at different moments. For this reason, and also because the action potential morphology of each cell is somewhat different, the transmembrane potential will be slightly different between adjoining cells during recovery. Now cardiac cells are interconnected by low-resistance junctions so the spatial variation of transmembrane potentials causes the flow of currents between and among all cells. Because the heart is surrounded by tissues that conduct electricity, the extracellular currents generated during recovery pervade the torso and give rise to observable recovery potentials at the body surface. In any particular body surface potential recording (lead) the potentials due to recovery are designated the T-wave. The sources for the T-wave are the sum total of cellular generators distributed throughout the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plonsey R. An extension of the solid angle potential formulation for an active cell. Biophys J 5:663, 1965.

    Article  PubMed  CAS  Google Scholar 

  2. Plonsey R. The formulation of bioelectric sourcefield relationships in terms of surface discontinuities. J Franklin Inst 297:317, 1974.

    Article  Google Scholar 

  3. Plonsey R. Bioelectric Phenomena. New York: McGraw-Hill Book Co., 1969.

    Google Scholar 

  4. Muler AV, Markin VS. Electrical properties of anisotropic nerve-muscle syncytia—II. Spread of flat front of excitation. Biofizika 22:518, 1977.

    PubMed  CAS  Google Scholar 

  5. Hodgkin AL, Rushton WA. The electrical constants of a crustacean nerve fiber. Proc Roy Soc B133:444, 1946.

    Google Scholar 

  6. Sommer JR. Implications of structure and geometry on cardiac electrical activity. Ann Biomed Eng. 11:149, 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Clerc L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J Physiol 255:335, 1976.

    PubMed  CAS  Google Scholar 

  8. Roberts D, Scher AM. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res 1982.

    Google Scholar 

  9. Tung L. A bidomain model for describing ischemic myocardial d.c. potentials. PhD dissertation, Mass Inst of Tech, Cambridge, 1978.

    Google Scholar 

  10. Miller WT, Geselowitz DB. Simulation studies of the electrocardiogram, I. The normal heart. Circ Res 43:301, 1978.

    PubMed  CAS  Google Scholar 

  11. Plonsey R, Barr RC. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities. Biophys J 45:557, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Diaz P, Rudy Y, Plonsey R. Intercalated discs as a cause for discontinuous propagation in cardiac muscle: A theoretical simulation. Ann Biomed Eng 11:177, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Streeter D, Spontnitz HM, Patel DP, Ross J, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339, 1969.

    PubMed  Google Scholar 

  14. Barr RC, Plonsey R. Propagation of excitation in an idealized anisotropic two-dimensional tissue. Biophys J June 1984.

    Google Scholar 

  15. Spach MS, Barr RC, Serwer GS, Johnson EA, Kootsey JM. Collision of excitation waves in the dog Purkinje system. Circ Res 29:499, 1971.

    PubMed  CAS  Google Scholar 

  16. Ushiyama J. Cardiac action potentials recorded from the site at which two impulses of excitation have collided. In FF Hao (ed.), Research in Physiology, A Liber Memorial is in Honor of Professor Chandler McCusky Brooks. Bologna, Italy, pp. 37–43, 1971.

    Google Scholar 

  17. Spach MS, Miller WT III, Miller-Jones E, Warren RB, Barr RC. Extracellular potentials related to intracellular potentials during impulse conduction in anisotropic canine cardiac muscle. Circ Res 45:188, 1979.

    PubMed  CAS  Google Scholar 

  18. Wilson FN, Macleod AG, Barker PS, Johnston FD. The determination and the significance of the areas of the ventricular deflections of the electrocardiogram. Am Heart J 10:46, 1934.

    Article  Google Scholar 

  19. McFee R, Johnston FD. Electrocardiographic leads. Circulation 8:554, 1953; 9:255, 1954; 9:868, 1954.

    PubMed  CAS  Google Scholar 

  20. Plonsey R. A contemporary view of the ventricular gradient of Wilson. J Electrocardiol 12:337, 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Burgess MJ. Relation of ventricular repolarization to electrocardiographic T-waveform and arrhythmia vulnerability. Am J Physiol 236: H391 1979.

    PubMed  CAS  Google Scholar 

  22. Cohn RL, Rush S, Lebeschkin E. Theoretical analyses and computer simulation of ECG ventricular gradient and recovery waveforms. IEEE Trans Biomed Eng BME-29:4l3, 1982.

    Article  Google Scholar 

  23. Geselowitz DB. The ventricular gradient revisited: Relation to the area under the action potential. IEEE Trans Biomed Eng BME-30:76, 1983.

    Article  Google Scholar 

  24. Harumi K Burgess MJ, Abildskov JA. A theoretic model of the T-wave. Circulation 34:657, 1966.

    PubMed  CAS  Google Scholar 

  25. Simonson E, Schmitt O, Dahl J, Fry D, Bakkeu EE. The theoretical and experimental bases of the frontal plane ventricular gradient and its spatial counterpart. Am Heart J 47:122, 1954.

    Article  PubMed  CAS  Google Scholar 

  26. Cosma J, Levy B, Pipberger HV. The spatial ventricular gradient during alterations in the ventricular activation pathway. Am Heart J 71:84, 1966.

    Article  PubMed  CAS  Google Scholar 

  27. Mirvis DM. Isoarea distributions during ectopic stimulation of isolated rabbit hearts. J Electrocardiol 14:159, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Lux RL, Urie PM, Burgess MJ, Abildskov JA. Variability of the body surface distributions of QRS, ST-T, and QRST deflection areas with varied activation sequence in dogs. Cardiovasc Res 14:607, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Burgess MJ, Lux RL, Wyatt RF, Abildskov JA. The relation of localized myocardial warming to changes in cardiac surface electrograms in dogs. Circ Res 43:899, 1978.

    PubMed  CAS  Google Scholar 

  30. Abildskov JA, Evans AK, Lux RL, Burgess, MJ. Ventricular recovery properties and QRST deflection area in cardiac electrograms. Am J Physiol 239:H227, 1980.

    PubMed  CAS  Google Scholar 

  31. Cranefield PF, Hoffman BF. Propagated repolarization in heart muscle. J Gen Physiol 41:633, 1958.

    Article  PubMed  CAS  Google Scholar 

  32. Christian E, Scher AM. The effect of ventricular depolarization on the sequence of ventricular repolarization. Am Heart J 74:530, 1967.

    Article  PubMed  CAS  Google Scholar 

  33. Abildskov JA. Effects of activation sequence on the local recovery of ventricular excitability in the dog. Circ Res 38:240, 1976.

    PubMed  CAS  Google Scholar 

  34. Toyoshima H, Burgess MJ. Electrotonic interaction during canine ventricular repolarization. Circ Res 43:348, 1978.

    PubMed  CAS  Google Scholar 

  35. Avitall B, Levine HJ, Naimi S, Donalue RP, Pauker SG, Adam D. Local effects of electrical and mechanical stimulation on the recovery properties of the canine ventricle. Am J Cardiol 50:263, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Hoffman BF, Cranefield PF, Lepeschkin E, Surawicz B, Herrlich HC. Comparison of cardiac monophasic action potentials recorded by intracellular and suction electrodes. Am J Physiol 196:1297, 1959.

    PubMed  CAS  Google Scholar 

  37. Wyatt RL. Comparison of estimates of activation and recovery times from bipolar and unipolar electrograms to in vivo transmembrane action potential durations. IEEE 1980 Frontiers of Engineering in Health Care 22.

    Google Scholar 

  38. Greenspan AM, Camardo JS, Horowitz LN, Spielman SR, Josephson ME. Human ventricular refractoriness: Effects of increasing current. Am J Cardiol 47:244, 1981.

    Article  PubMed  CAS  Google Scholar 

  39. Autenrieth G, Surawicz B, Kuo CS. Sequence of repolarization on the ventricular surface in the dog. Am Heart J 89:463, 1975.

    Article  PubMed  CAS  Google Scholar 

  40. Toyoshima H, Lux RL, Wyatt RL, Burgess MJ, Abildskov JH. Sequences of early and late phases of repolarization on dog ventricular epicardium. J Electrocardiol 14:143, 1981.

    Article  PubMed  CAS  Google Scholar 

  41. Abildskov J A. The sequence of normal recovery of excitability in the dog heart. Circulation 52:442, 1975.

    PubMed  CAS  Google Scholar 

  42. Carmeliet E. Repolarization and frequency in cardiac cells. J Physiol (Paris) 73:903, 1977.

    CAS  Google Scholar 

  43. Miller JP, Wallace AG, Feezor MD. A quantitative comparison of the relation between the shape of the action potential and the pattern of stimulation in canine ventricular muscle and Purkinje fibers. J Mol Cell Cardiol 2:3, 1971.

    Article  PubMed  CAS  Google Scholar 

  44. Solberg LE, Singer DH, Ten Eick RE, Duffia EG. Glass microelectrode studies on intramural papillary muscle cells. Circ Res 34:783, 1974.

    PubMed  CAS  Google Scholar 

  45. van Dam RT, Durrer D. Experimental study on the intramural distribution of the excitability cycle and on the form of the epicardial T wave in the dog heart in situ. Am Heart J 61:537, 1961.

    Article  Google Scholar 

  46. van Dam RT, Durrer D. The T wave and ventricular repolarization. Am J Cardiol 14:294, 1964.

    Article  Google Scholar 

  47. Burgess MJ, Green LS, Millar K, Wyatt R, Abilkdskov JA. The sequence of normal ventricular recovery. Am Heart J 84:660, 1972.

    Article  PubMed  CAS  Google Scholar 

  48. Noble D, Cohen I. The interpretation of the T-wave of the electrocardiogram. Cardiovasc Res 12:13, 1978.

    Article  PubMed  CAS  Google Scholar 

  49. Kootsey JM, Johnston EA. The origin of the T wave. CRC Critical Reviews in Bioengineering 6:233, 1980.

    Google Scholar 

  50. Kootsey JM, Johnston EA. The repolarization phase of the cardiac action potential: An essentially time-independent system of conductance changes. Biophys J 13:130a, 1973.

    Google Scholar 

  51. Joyner RW, Picone J, Veenstra R, Rawling D. Propagation through electrically coupled cells. Circ Res 53:526, 1983.

    PubMed  CAS  Google Scholar 

  52. Beeler GW, Reuter H. Reconstruction of the action potential of myocardial fibers. J Physiol (London) 268:177, 1977.

    PubMed  CAS  Google Scholar 

  53. Abildskov, JA. The primary T wave—a new electrocardiographic waveform. Am Heart J 81:242, 1971.

    Article  PubMed  CAS  Google Scholar 

  54. Horan LG, Hand RC, Johnson JC, Sridharan MR, Rankin TB Flowers NC. A theoretical examination of ventricular repolarization and the secondary T wave. Circ Res 42:750, 1978.

    PubMed  CAS  Google Scholar 

  55. Urie PM, Burgess MJ, Lux RL, Wyatt RF, Abildskov JA. The electrocardiographic recognition of cardiac states at high risk of ventricular arrhythmias. Circ Res 42:350, 1978.

    PubMed  CAS  Google Scholar 

  56. Han J, Moe GK. Nonuniform recovery of excitability in ventricular muscle. Circ Res 14:44,1964.

    PubMed  CAS  Google Scholar 

  57. Hori M. Simulation study of QRS-T waves based on an eccentric spherical model of the heart. Jap Circ J 42:539, 1978.

    Article  PubMed  CAS  Google Scholar 

  58. Inoue M, Hori M, Kajiya F, Kusvoka H, Abe H, Furukawa T, Takasugi, S. Theoretical analysis of T-wave polarity based on a model of cardiac electrical activity. J Electrocardiol 11: 171, 1978.

    Article  PubMed  CAS  Google Scholar 

  59. Spach MS, Barr RC, Origin of epicardial ST-T wave potentials in intact dog. Circ Res 39:475, 1976.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

Plonsey, R. (1987). Recovery of Cardiac Activity—The T-Wave and Ventricular Gradient. In: Liebman, J., Plonsey, R., Rudy, Y. (eds) Pediatric and Fundamental Electrocardiography. Developments in Cardiovascular Medicine, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2323-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2323-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9428-3

  • Online ISBN: 978-1-4613-2323-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics