Skip to main content

Present State of the Art of Body Surface Mapping

  • Chapter
Book cover Pediatric and Fundamental Electrocardiography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 56))

Abstract

When one is considering the developments that have occurred during the last 5 to 10 years in the field of body surface mapping, the picture that presents itself—as continually happens in the field of medical and other sciences—is that of a rapidly expanding subspecialty in which new facts and horizons are being incorporated at a rapid rate into the existing conceptual framework of knowledge. The ultimate aim of that knowledge is an important contribution to the power of electrocardiographic methods, is now forthcoming, so it is likely that electrocardiography is on the verge of a new era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taccardi B, De Ambroggi L. Le elettromappe cardiache. In A Beretta Anguiscola, V Puddu and GC. Edizioni (eds.), Cardiologia d’oggi. Torino: Medico Scientifiche, 1983, p. 1.

    Google Scholar 

  2. Abildskov JA, Green LS, Lux RL. The present status of body surface potentialmapping. J Am Coll Cardiol 2:394, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Benson WD, Spach MS. Evolution of QRS and ST-T wave body surface potential distributions during the first year of life. Circulation 65:1247, 1982.

    Article  PubMed  Google Scholar 

  4. Liebman J, Thomas CW, Rudy Y, Plonsey, R. Electrocardiographic body surface potential maps of the QRS of normal children. J Electrocardiol 14:249, 1981.

    Article  Google Scholar 

  5. Liebman J, Thomas CW, Salamone R, Rudy Y, Plonsey R. Quantification of electrocardiographic body surface potential maps of the QRS and T of normal children. In H Ueda, S Murao, K Yamada, K Harumi, S Mashima, M Hiraoka. (eds.), Recent Advances in Electrocardiology. Jpn Heart J 23:suppl I:409, 1982.

    Google Scholar 

  6. Green LS, Lux RL, Haws CW, Williams RR, Hunt SC, Burgess MJ. Effects of age, sex, and body habitus on QRS and St-T potential maps of 1100 normal subjects. Circulation 71:244, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Filipova S, Hulin I, Bernadic M. ECG mapping of the development changes of ventricular activation in puberty and adolescence. In I Ruttkay-Nedecky, P Macfarlane, (eds.), Electrocardiology ’83. Amsterdam: Excerpta Medica, 1984, p. 678.

    Google Scholar 

  8. Schubert E. Sources of physiological variabilites of the cardiac electric field in man: The influence of different inflation of the lungs and of high heart rate on the repolarization field. In Le coeur et l’esprit, Brussels: Presses de l’universite, 1977, p. 234.

    Google Scholar 

  9. Flaherty J, Blumenschein S, Alexander A. The influence of respiration on recording cardiac potentials. Am J Cardiol 20:21, 1967.

    Article  PubMed  CAS  Google Scholar 

  10. Sylven JC, Horacek BM Spencer CA, Klassen GA, Montague TJ. QT interval variability on the body surface. J Electrocardiol 17:179, 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Mirvis DM. Spatial variation of QT intervals in normal persons and patients with acute myocardial infarction J Am Coll Cardiol 5:625, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Spach MS, Barr RC, Warren RB, Benson DW, Walston PDA, Edwards SB. Isopotential body surface mapping in subjects of all ages: Emphasis on low-level potentials with analysis of the method. Circulation 59:803, 1979.

    Google Scholar 

  13. Taccardi B. Body surface distribution of equipotential lines during atrial depolarization and ventricular repolarization. Circ Res 19:865, 1966.

    PubMed  CAS  Google Scholar 

  14. Flowers NC, Swartsman V, Horan LG. On line beat-by-beat body surface detection of His-Purkinje potential. In Yamada, Harumi K, Musha T, Nagoya (eds.), Advances in Yamada: Body surface Potential Mapping. University of Nagoya Press, 1983, p. 281.

    Google Scholar 

  15. Sano T, Sakamoto Y, Yamamoto M, Suzuki, F. The body surface U-wave potentials. In PW Macfarlane (ed.), Progress in Electrocardiology. Pergamon Press, 1978, p. 227.

    Google Scholar 

  16. Stilli D, Musso E, Barone P, Ciarlini P, Guspini A, Macchi E, Regoliosi G, Taccardi B. Description of averaged maps relating to the P, P-Q and St-intervals. In Yamada K, Harumi K, Musha T (eds.), Advances in Body Surface Potential Mapping. Nagoya: of Nagoya Press, 1983, p. 195.

    Google Scholar 

  17. Horan LG, Flowers NC, Johnson JC. The dynamic pathway of His bundle activation as derived from body surface maps. ibid. p. 189.

    Google Scholar 

  18. Blumenschein S. Genesis of body surface potentials in varying types of right ventricular hypertrophy. Circulation 38:917, 1968.

    PubMed  CAS  Google Scholar 

  19. Karsh RB, Spach MS, Barr RC. Interpretation of isopotential surface maps in patients with ostium primum and secondum atrial defects. Circulation 41:913, 1970.

    PubMed  CAS  Google Scholar 

  20. Takahashi Y, Takao A, Aiba S, Takamizawa K. Body surfaceisopotential maps in atrio-ventricular discordance. Jpn Heart J 23, suppl I:412, 1982.

    Google Scholar 

  21. Flaherty J, Spach MS, Boineau JP. Cardiac potentials on body surface of infants with anomalous left coronary artery. Circulation 36:345, 1967.

    PubMed  CAS  Google Scholar 

  22. Sohi GS, Green EW, Flowers NC, McMartin DE, Masden RR. Body surface potential maps in patients with pulmonic valvula stenosis of mild tomoderate severity. Circulation 59:1277, 1979.

    PubMed  CAS  Google Scholar 

  23. Taccardi B, De Ambroggi L, Riva D. Chest-maps of heart potentials in right bundle branch block. J Electrocardiol 2:109, 1969.

    Article  PubMed  CAS  Google Scholar 

  24. Kato R, Kitamura K, Ishikawa S. Postoperative right bundle branch block: Evaluation of noninvasive methods to identify the level and mechanism of block. In F de Padua F and PW Macfarlane, (eds.), New Frontiers of Electrocardiology. publ.: Chichester: Research Studies Press, 1980, p. 382.

    Google Scholar 

  25. Liebman J, Rudy Y, Diaz P, Thomas CW, Plonsey R. The spectrum of right bundle branch block as manifested in electrocardiographic body surface potential maps. J Electrocardiol 17:329, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Sugenoya J. Interpretation of the body surface isopotential maps of patients with right bundle branch block. Jpn Heart J 19:12, 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Sohi GS, Flowers NC. Body surface map patterns of altered depolarization and repolarization in right bundle branch block. Circulation 61:634, 1980.

    PubMed  CAS  Google Scholar 

  28. Preda I, Bukosza I, Kozmann G, Shakin VV, Szekely A, Antaloczy A. Surface potential distribution on the human thoracic surface in left bundle branch block. Jpn Heart J 20:7, 1979.

    Article  PubMed  CAS  Google Scholar 

  29. Stilli D, Musso E, Macchi E, Taccardi B. Diagnostic value of body surface maps in left bundle branch block. Adv Cardiol 28:36, 1981.

    PubMed  CAS  Google Scholar 

  30. Sohi G, Flowers NC, Horan LG. Comparison of total body surface map depolarization patterns of left bundle branch block and normal axis with left bundle branch block and left axis deviation. Circulation 67:660, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Sohi GS, Flowers NG: Distinguishing features of left anterior fascicular block and inferior myocardial infarction as presented by body surface potential maps. Circulation 60:1354, 1979.

    PubMed  CAS  Google Scholar 

  32. Sohi GS, Flowers NC. Effects of the left anterior fascicular block on the depolarization process as depicted by total body surface mapping. J Electrocardiol 13:143, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Musso E. (personal communication).

    Google Scholar 

  34. Taccardi B, Musso E, Stilli D, Bo M, Macchi E, Rolli A, Botti H. The usefulness of body surface maps in recognizing myocardial infarction, left ventricular hypertrophy and ischaemia associated with left bundle branch block. In Cardiac Electrophysiology Today. A Masoni and P Alboni (eds.), New York: Academic Press, 1982, p. 458.

    Google Scholar 

  35. Flowers NC, Horan LG. Comparative surface potential patterns in obstructive and nonobstructive cardiomyopathy. Am Heart J 86:196, 1973.

    Article  PubMed  CAS  Google Scholar 

  36. Tsunakawa H, Hoshino K, Kanesaka S, Harumi K, Okamoto Y, Teramachi Y, Musha T. Estimation of the position of Kent bundle in WPW syndrome from the body surface potential mapping. Jpn Heart J 23 suppl I:403, 1982.

    Google Scholar 

  37. Gulrajani RM, Pham-Huy H, Nadeau RA, Savard P, de Guise J, Primeau RE, Roberge FA. Application of the moving dipole inverse solution to the study of the Wolff-Parkinson-White syndrome in man. J Electrocardiol 17:271, 1983.

    Article  Google Scholar 

  38. Benson D, Sterba R, Gallagher JJ, Walston A, Spach MS. Localization of the site of ventricular preexcitation with body surface maps in patients with WPW syndrome. Circulation 65:1259, 1982.

    Article  PubMed  Google Scholar 

  39. Yamada K, Toyama J, Wada M, Sugiyama. Body surface isopotential mapping in WPW syndrome. Am Heart J 90:721, 1975.

    Article  PubMed  CAS  Google Scholar 

  40. De Ambroggi L, Taccardi B, Macchi E. Body surface maps of heart potentials. Tentative localization of pre-excited areas in 42 Wolff-Parkinson-White patients. Circulation 54:251, 1976.

    PubMed  Google Scholar 

  41. Iwa T, Magara T. Correlation of accessory conduction pathways and body surface maps in Wolff-Parkinson-White syndrome. Jpn Circ J 45:1192, 1981.

    Article  PubMed  CAS  Google Scholar 

  42. Oguri H, Lux RL, Burgess MJ, Wyatt RF, Abildskov JA. Body surface distributions of QRS deflection areas in experimental ventricular pre-excitation. J Electrocardiol 13:237, 1980.

    Article  PubMed  CAS  Google Scholar 

  43. Sippens Groenewegen A, Spekhorst HHM, Reek E. A quantitative method for the localization of the ventricular pre-excitation area in the Wolff-Parkinson-White syndrome using singular value decomposition of body surface potentials. J Electrocardiol 18:157, 1985.

    Article  Google Scholar 

  44. Ideker RE, Mirvis DM, Smith WM. Editorial: Late fractionnated potentials. Am J Cardiol 55:1614, 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Urie PM, Burgess MJ, Lux RL, Wyatt RF, Abildskov JA. The electrocardiographic recognition of cardiac states at high risk of ventricular arrhythmias. Circ Res 42:350, 1978.

    PubMed  CAS  Google Scholar 

  46. Abildskov JA, Burgess MJ, Ershler I, Lux RL, Urie PM. Electrocardiographic recognition of states of high risk of ventricular arrhythmias. Circulation 58 suppl II: 153, 1978.

    Google Scholar 

  47. Gardner MJ, Montague TJ, Horacek MB, Cameron DA, Flemington CS, Smith ER. Vulnerability to arrhythmia/dysrhythmia: Assessment by body-surface mapping. Circulation 64 suppl IV: 328, 1981.

    Google Scholar 

  48. Hayashi H, Ishikawa T, Uematsu H, Takami K, Kojima H, Yabe S, Ohsugi S. Identification of the site of origin of ventricular premature beats by body surface map in patients with and without cardiac disease. In K Yamada, K Harumi, T Musha (eds.), Advances in Body Surface Potential Mapping. Nagoya: of Nagoya Press, 1983, p. 257.

    Google Scholar 

  49. Flowers NC, Horan LG, Sohi GS, Hand RC, Johnson JC. New evidence for inferoposterior myocardial infarction on surface potential maps. Am J Cardiol 38:576, 1976.

    Article  PubMed  CAS  Google Scholar 

  50. Ohta T, Kinoshita A, Osugi J. Correlation between body surface isopotential maps and left ventriculograms in patients with old inferoposterior infarctions. Am Heart J 104:1262, 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Osugi JI, Ohta T, Toyama J, Takatsu F, Nagaya T, Yamada K. Body surface isopotential maps in old inferior myocardial infarction undetectable by 12 lead electrocardiogram. J Electrocardiol 17:55, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. van Dam RT, Heringa A, Uijen GJH, Geboers A. Diagnostic value of body surface maps in acute and chronic myocardial infarction. Abstracts 11th Int. Congress on Electrocardiology. Caen, France, 102, 1984.

    Google Scholar 

  53. van Dam RT, Heringa A, Uijen GJH, Pol A van de, van der Poel J, Spierenburg HAM, Lim LSL. Interpretation of body surface maps of combined infarctions based on kinetics analysis. In Electrocardiology ’83. Amsterdam: Excerpta Medica, 1984, p. 177.

    Google Scholar 

  54. Reid DS, Pelides LJ, Shillingford JP. Surface mapping of RS-T segment in acute myocardial infarction. Br Heart J 33:370, 1971.

    Article  PubMed  CAS  Google Scholar 

  55. Madias JE, Venkataraman K, Hood WB. Precordial ST-segment mapping. Clinical studies in the coronary care unti. Circulation 52:799, 1975.

    PubMed  CAS  Google Scholar 

  56. Murray RG, Peshock RM, Parkey RW, Bonte FJ, Willerson JT, Blomqvist CG. ST isopotential precordial surface maps in patients with acute myocardial infarction. J Electrocardiol 12: 55, 1979.

    Article  PubMed  CAS  Google Scholar 

  57. von Essen R, Merx W, Effert S. Spontaneous course of ST-segment elevation-in acute anterior myocardial infarction. Circulation 59:105, 1979.

    PubMed  CAS  Google Scholar 

  58. Mirvis DM. Body surface distributions of repolarization forces during acute myocardial infarction. Circulation 62:878, 1980.

    PubMed  CAS  Google Scholar 

  59. Mirvis DM. Body surface distributions of repolarization forces during acute myocardial infarction II. Circulation 63:623, 1981.

    Article  PubMed  CAS  Google Scholar 

  60. Fozzard HA, DasGupta DS. ST-segments and mapping; theory and experiments. Circulation 54:533, 1976.

    PubMed  CAS  Google Scholar 

  61. Holland RP, Brooks HP. TQ-ST segment mapping: Critical review and analysis of current concepts. Am J Cardiol 40:110, 1977.

    Article  PubMed  CAS  Google Scholar 

  62. Mirvis DM, Holbrook MA. Body surface distribution of repolarization potentials after acute myocardial infarction III. Dipole ranging in normal subjects and in patients with acute myocardial infarction. J Electrocardiol 14:387, 1981.

    Article  PubMed  CAS  Google Scholar 

  63. van Dam RT, Heringa A, Uijen GJH, Geboers A. Diagnosis of acute apical infarction by body surface maps. Circulation 70 suppl. II: 13, 1984.

    Google Scholar 

  64. Ryabkina G. Cartographic indices by multiple 35 ECG-leads in inferior myocardial infarction. Adv Cardiol 28:214, 1981.

    Google Scholar 

  65. Shaposhnick, Gladishev P. Some experience in analysis of ECG mapping in acute myocardial infarction. Advances Cardiol 28:67, 1981.

    CAS  Google Scholar 

  66. Montague TJ, Smith ER, Spencer CA, Johnstone DE, Lalonde LD, Bessoudo RM, Gardner MJ, Anderson RN, Horace BM. Body surface electrocardiographic mapping in inferior myocardial infarction; manifestation of left and right ventricular involvement. Circulation 67: 665, 1983.

    Article  PubMed  CAS  Google Scholar 

  67. Block P, Nyssen E, Dewilde P, Taeymans Y, Nyssen M, Demoor D, Cornelis J, Kornreich F. Diagnostic usefulness of ECG potential maps for noninvasive diagnosis of right ventricular infarction. In I Ruttkay-Nedecky and P Macfarlane (eds.), Electrocardiology ’83. Amsterdam: Excerpta Medica, 1984, p. 144.

    Google Scholar 

  68. Schubert E, Eckoldt K, Kastner R. The electric field of the cardiac repolarization in physical work. Adv Cardiol 16:32, 1976.

    PubMed  CAS  Google Scholar 

  69. Mirvis DM, Keller FW, Cox JW, Zettergreen DG, Dowdie RF, Ideker RE. Left precordial isopotential mapping during supine exercise. Circulation 56:245, 1977.

    PubMed  CAS  Google Scholar 

  70. Miller WT, Spach MS, Warren RB. Total body surface potential mapping during exercise: QRST-wave changes in normal young adults. Circulation 62:632, 1980.

    PubMed  Google Scholar 

  71. Simoons ML, Block P. Toward the optimal lead system and optimal criteria for exercise electrocardiography. Am J Cardiol 47:1366, 1981.

    Article  PubMed  CAS  Google Scholar 

  72. DeAmbroggi L, Macchi E, Brusoni B, Taccardi B. Electromaps during ventricular recovery in angina patients with normal resting ECG. Adv Cardiol 19:88, 1977.

    CAS  Google Scholar 

  73. Yanowitz FG, Vincent GM, Lux RL, Merchant M, Green LS, Abildskov JA. Application of body surface mapping for exercise testing: S-T80 Isoarea maps in patients with coronary artery disease. Am J Cardiol 50:1109, 1982.

    Article  PubMed  CAS  Google Scholar 

  74. Kawakubo K, Murayama M, Kawahara T, Oshiro M, Mashima S, Murao S. Clinical usefulness of St mapping. Jpn Heart J 23, suppl I: 612, 1982.

    Google Scholar 

  75. Kubota I, Saito K, Watanabe Y, Tsuiki K, Yasui S. Treadmill exercise test using body surface mapping Jpn Heart J 22:871, 1981.

    Article  PubMed  CAS  Google Scholar 

  76. Yasui S, Kubota I, Watanabe Y, Tsuiki K. Quantitative evaluation of treadmill test induced ST-T changes using body surface mapping. Jpn Circ J 45:1208, 1981.

    Article  PubMed  CAS  Google Scholar 

  77. Mizuno Y, Wada M, Kaneko K, Kondo T, Hishida H. Exercise stress body surface ST potential distribution in ischemic heart disease. Comparison with myocardial stress perfusion scintigram and coronary angiogram. In K Yamada, K Harumi, T Musha, (eds.), Advances in Body Surface Potential Mapping. Nagoya: University of Nagoya Press, 1983, p. 235.

    Google Scholar 

  78. Kozmann G, Wolf T, Szlavik F, Preda I. Signal-to-noise ratio enhancing procedure for exercise body surface potential mapping. In I Ruttkay-Nedecky and PW Macfarlane (eds.), Electrocardiology ’83, Amsterdam: Excerpta Medica, 1984, p. 195.

    Google Scholar 

  79. Heringa A, Uijen GJH, van Dam RT. Feature extraction and statistical evaluation of body surface maps vs ECG. ibid. p. 199.

    Google Scholar 

  80. Amirov RZ: Terminology in electrocardiotopography. ibid. p. 154.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

van Dam, R.T. (1987). Present State of the Art of Body Surface Mapping. In: Liebman, J., Plonsey, R., Rudy, Y. (eds) Pediatric and Fundamental Electrocardiography. Developments in Cardiovascular Medicine, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2323-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2323-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9428-3

  • Online ISBN: 978-1-4613-2323-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics