Present State of the Art of Body Surface Mapping

  • Rudolph Th. van Dam
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 56)


When one is considering the developments that have occurred during the last 5 to 10 years in the field of body surface mapping, the picture that presents itself—as continually happens in the field of medical and other sciences—is that of a rapidly expanding subspecialty in which new facts and horizons are being incorporated at a rapid rate into the existing conceptual framework of knowledge. The ultimate aim of that knowledge is an important contribution to the power of electrocardiographic methods, is now forthcoming, so it is likely that electrocardiography is on the verge of a new era.


Body Surface Acute Myocardial Infarction Left Bundle Branch Block Right Bundle Branch Block Right Bundle Branch Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taccardi B, De Ambroggi L. Le elettromappe cardiache. In A Beretta Anguiscola, V Puddu and GC. Edizioni (eds.), Cardiologia d’oggi. Torino: Medico Scientifiche, 1983, p. 1.Google Scholar
  2. 2.
    Abildskov JA, Green LS, Lux RL. The present status of body surface potentialmapping. J Am Coll Cardiol 2:394, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Benson WD, Spach MS. Evolution of QRS and ST-T wave body surface potential distributions during the first year of life. Circulation 65:1247, 1982.PubMedCrossRefGoogle Scholar
  4. 4.
    Liebman J, Thomas CW, Rudy Y, Plonsey, R. Electrocardiographic body surface potential maps of the QRS of normal children. J Electrocardiol 14:249, 1981.CrossRefGoogle Scholar
  5. 5.
    Liebman J, Thomas CW, Salamone R, Rudy Y, Plonsey R. Quantification of electrocardiographic body surface potential maps of the QRS and T of normal children. In H Ueda, S Murao, K Yamada, K Harumi, S Mashima, M Hiraoka. (eds.), Recent Advances in Electrocardiology. Jpn Heart J 23:suppl I:409, 1982.Google Scholar
  6. 6.
    Green LS, Lux RL, Haws CW, Williams RR, Hunt SC, Burgess MJ. Effects of age, sex, and body habitus on QRS and St-T potential maps of 1100 normal subjects. Circulation 71:244, 1985.PubMedCrossRefGoogle Scholar
  7. 7.
    Filipova S, Hulin I, Bernadic M. ECG mapping of the development changes of ventricular activation in puberty and adolescence. In I Ruttkay-Nedecky, P Macfarlane, (eds.), Electrocardiology ’83. Amsterdam: Excerpta Medica, 1984, p. 678.Google Scholar
  8. 8.
    Schubert E. Sources of physiological variabilites of the cardiac electric field in man: The influence of different inflation of the lungs and of high heart rate on the repolarization field. In Le coeur et l’esprit, Brussels: Presses de l’universite, 1977, p. 234.Google Scholar
  9. 9.
    Flaherty J, Blumenschein S, Alexander A. The influence of respiration on recording cardiac potentials. Am J Cardiol 20:21, 1967.PubMedCrossRefGoogle Scholar
  10. 10.
    Sylven JC, Horacek BM Spencer CA, Klassen GA, Montague TJ. QT interval variability on the body surface. J Electrocardiol 17:179, 1984.PubMedCrossRefGoogle Scholar
  11. 11.
    Mirvis DM. Spatial variation of QT intervals in normal persons and patients with acute myocardial infarction J Am Coll Cardiol 5:625, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Spach MS, Barr RC, Warren RB, Benson DW, Walston PDA, Edwards SB. Isopotential body surface mapping in subjects of all ages: Emphasis on low-level potentials with analysis of the method. Circulation 59:803, 1979.Google Scholar
  13. 13.
    Taccardi B. Body surface distribution of equipotential lines during atrial depolarization and ventricular repolarization. Circ Res 19:865, 1966.PubMedGoogle Scholar
  14. 14.
    Flowers NC, Swartsman V, Horan LG. On line beat-by-beat body surface detection of His-Purkinje potential. In Yamada, Harumi K, Musha T, Nagoya (eds.), Advances in Yamada: Body surface Potential Mapping. University of Nagoya Press, 1983, p. 281.Google Scholar
  15. 15.
    Sano T, Sakamoto Y, Yamamoto M, Suzuki, F. The body surface U-wave potentials. In PW Macfarlane (ed.), Progress in Electrocardiology. Pergamon Press, 1978, p. 227.Google Scholar
  16. 16.
    Stilli D, Musso E, Barone P, Ciarlini P, Guspini A, Macchi E, Regoliosi G, Taccardi B. Description of averaged maps relating to the P, P-Q and St-intervals. In Yamada K, Harumi K, Musha T (eds.), Advances in Body Surface Potential Mapping. Nagoya: of Nagoya Press, 1983, p. 195.Google Scholar
  17. 17.
    Horan LG, Flowers NC, Johnson JC. The dynamic pathway of His bundle activation as derived from body surface maps. ibid. p. 189.Google Scholar
  18. 18.
    Blumenschein S. Genesis of body surface potentials in varying types of right ventricular hypertrophy. Circulation 38:917, 1968.PubMedGoogle Scholar
  19. 19.
    Karsh RB, Spach MS, Barr RC. Interpretation of isopotential surface maps in patients with ostium primum and secondum atrial defects. Circulation 41:913, 1970.PubMedGoogle Scholar
  20. 20.
    Takahashi Y, Takao A, Aiba S, Takamizawa K. Body surfaceisopotential maps in atrio-ventricular discordance. Jpn Heart J 23, suppl I:412, 1982.Google Scholar
  21. 21.
    Flaherty J, Spach MS, Boineau JP. Cardiac potentials on body surface of infants with anomalous left coronary artery. Circulation 36:345, 1967.PubMedGoogle Scholar
  22. 22.
    Sohi GS, Green EW, Flowers NC, McMartin DE, Masden RR. Body surface potential maps in patients with pulmonic valvula stenosis of mild tomoderate severity. Circulation 59:1277, 1979.PubMedGoogle Scholar
  23. 23.
    Taccardi B, De Ambroggi L, Riva D. Chest-maps of heart potentials in right bundle branch block. J Electrocardiol 2:109, 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    Kato R, Kitamura K, Ishikawa S. Postoperative right bundle branch block: Evaluation of noninvasive methods to identify the level and mechanism of block. In F de Padua F and PW Macfarlane, (eds.), New Frontiers of Electrocardiology. publ.: Chichester: Research Studies Press, 1980, p. 382.Google Scholar
  25. 25.
    Liebman J, Rudy Y, Diaz P, Thomas CW, Plonsey R. The spectrum of right bundle branch block as manifested in electrocardiographic body surface potential maps. J Electrocardiol 17:329, 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Sugenoya J. Interpretation of the body surface isopotential maps of patients with right bundle branch block. Jpn Heart J 19:12, 1978.PubMedCrossRefGoogle Scholar
  27. 27.
    Sohi GS, Flowers NC. Body surface map patterns of altered depolarization and repolarization in right bundle branch block. Circulation 61:634, 1980.PubMedGoogle Scholar
  28. 28.
    Preda I, Bukosza I, Kozmann G, Shakin VV, Szekely A, Antaloczy A. Surface potential distribution on the human thoracic surface in left bundle branch block. Jpn Heart J 20:7, 1979.PubMedCrossRefGoogle Scholar
  29. 29.
    Stilli D, Musso E, Macchi E, Taccardi B. Diagnostic value of body surface maps in left bundle branch block. Adv Cardiol 28:36, 1981.PubMedGoogle Scholar
  30. 30.
    Sohi G, Flowers NC, Horan LG. Comparison of total body surface map depolarization patterns of left bundle branch block and normal axis with left bundle branch block and left axis deviation. Circulation 67:660, 1983.PubMedCrossRefGoogle Scholar
  31. 31.
    Sohi GS, Flowers NG: Distinguishing features of left anterior fascicular block and inferior myocardial infarction as presented by body surface potential maps. Circulation 60:1354, 1979.PubMedGoogle Scholar
  32. 32.
    Sohi GS, Flowers NC. Effects of the left anterior fascicular block on the depolarization process as depicted by total body surface mapping. J Electrocardiol 13:143, 1980.PubMedCrossRefGoogle Scholar
  33. 33.
    Musso E. (personal communication).Google Scholar
  34. 34.
    Taccardi B, Musso E, Stilli D, Bo M, Macchi E, Rolli A, Botti H. The usefulness of body surface maps in recognizing myocardial infarction, left ventricular hypertrophy and ischaemia associated with left bundle branch block. In Cardiac Electrophysiology Today. A Masoni and P Alboni (eds.), New York: Academic Press, 1982, p. 458.Google Scholar
  35. 35.
    Flowers NC, Horan LG. Comparative surface potential patterns in obstructive and nonobstructive cardiomyopathy. Am Heart J 86:196, 1973.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsunakawa H, Hoshino K, Kanesaka S, Harumi K, Okamoto Y, Teramachi Y, Musha T. Estimation of the position of Kent bundle in WPW syndrome from the body surface potential mapping. Jpn Heart J 23 suppl I:403, 1982.Google Scholar
  37. 37.
    Gulrajani RM, Pham-Huy H, Nadeau RA, Savard P, de Guise J, Primeau RE, Roberge FA. Application of the moving dipole inverse solution to the study of the Wolff-Parkinson-White syndrome in man. J Electrocardiol 17:271, 1983.CrossRefGoogle Scholar
  38. 38.
    Benson D, Sterba R, Gallagher JJ, Walston A, Spach MS. Localization of the site of ventricular preexcitation with body surface maps in patients with WPW syndrome. Circulation 65:1259, 1982.PubMedCrossRefGoogle Scholar
  39. 39.
    Yamada K, Toyama J, Wada M, Sugiyama. Body surface isopotential mapping in WPW syndrome. Am Heart J 90:721, 1975.PubMedCrossRefGoogle Scholar
  40. 40.
    De Ambroggi L, Taccardi B, Macchi E. Body surface maps of heart potentials. Tentative localization of pre-excited areas in 42 Wolff-Parkinson-White patients. Circulation 54:251, 1976.PubMedGoogle Scholar
  41. 41.
    Iwa T, Magara T. Correlation of accessory conduction pathways and body surface maps in Wolff-Parkinson-White syndrome. Jpn Circ J 45:1192, 1981.PubMedCrossRefGoogle Scholar
  42. 42.
    Oguri H, Lux RL, Burgess MJ, Wyatt RF, Abildskov JA. Body surface distributions of QRS deflection areas in experimental ventricular pre-excitation. J Electrocardiol 13:237, 1980.PubMedCrossRefGoogle Scholar
  43. 43.
    Sippens Groenewegen A, Spekhorst HHM, Reek E. A quantitative method for the localization of the ventricular pre-excitation area in the Wolff-Parkinson-White syndrome using singular value decomposition of body surface potentials. J Electrocardiol 18:157, 1985.CrossRefGoogle Scholar
  44. 44.
    Ideker RE, Mirvis DM, Smith WM. Editorial: Late fractionnated potentials. Am J Cardiol 55:1614, 1985.PubMedCrossRefGoogle Scholar
  45. 45.
    Urie PM, Burgess MJ, Lux RL, Wyatt RF, Abildskov JA. The electrocardiographic recognition of cardiac states at high risk of ventricular arrhythmias. Circ Res 42:350, 1978.PubMedGoogle Scholar
  46. 46.
    Abildskov JA, Burgess MJ, Ershler I, Lux RL, Urie PM. Electrocardiographic recognition of states of high risk of ventricular arrhythmias. Circulation 58 suppl II: 153, 1978.Google Scholar
  47. 47.
    Gardner MJ, Montague TJ, Horacek MB, Cameron DA, Flemington CS, Smith ER. Vulnerability to arrhythmia/dysrhythmia: Assessment by body-surface mapping. Circulation 64 suppl IV: 328, 1981.Google Scholar
  48. 48.
    Hayashi H, Ishikawa T, Uematsu H, Takami K, Kojima H, Yabe S, Ohsugi S. Identification of the site of origin of ventricular premature beats by body surface map in patients with and without cardiac disease. In K Yamada, K Harumi, T Musha (eds.), Advances in Body Surface Potential Mapping. Nagoya: of Nagoya Press, 1983, p. 257.Google Scholar
  49. 49.
    Flowers NC, Horan LG, Sohi GS, Hand RC, Johnson JC. New evidence for inferoposterior myocardial infarction on surface potential maps. Am J Cardiol 38:576, 1976.PubMedCrossRefGoogle Scholar
  50. 50.
    Ohta T, Kinoshita A, Osugi J. Correlation between body surface isopotential maps and left ventriculograms in patients with old inferoposterior infarctions. Am Heart J 104:1262, 1982.PubMedCrossRefGoogle Scholar
  51. 51.
    Osugi JI, Ohta T, Toyama J, Takatsu F, Nagaya T, Yamada K. Body surface isopotential maps in old inferior myocardial infarction undetectable by 12 lead electrocardiogram. J Electrocardiol 17:55, 1984.PubMedCrossRefGoogle Scholar
  52. 52.
    van Dam RT, Heringa A, Uijen GJH, Geboers A. Diagnostic value of body surface maps in acute and chronic myocardial infarction. Abstracts 11th Int. Congress on Electrocardiology. Caen, France, 102, 1984.Google Scholar
  53. 53.
    van Dam RT, Heringa A, Uijen GJH, Pol A van de, van der Poel J, Spierenburg HAM, Lim LSL. Interpretation of body surface maps of combined infarctions based on kinetics analysis. In Electrocardiology ’83. Amsterdam: Excerpta Medica, 1984, p. 177.Google Scholar
  54. 54.
    Reid DS, Pelides LJ, Shillingford JP. Surface mapping of RS-T segment in acute myocardial infarction. Br Heart J 33:370, 1971.PubMedCrossRefGoogle Scholar
  55. 55.
    Madias JE, Venkataraman K, Hood WB. Precordial ST-segment mapping. Clinical studies in the coronary care unti. Circulation 52:799, 1975.PubMedGoogle Scholar
  56. 56.
    Murray RG, Peshock RM, Parkey RW, Bonte FJ, Willerson JT, Blomqvist CG. ST isopotential precordial surface maps in patients with acute myocardial infarction. J Electrocardiol 12: 55, 1979.PubMedCrossRefGoogle Scholar
  57. 57.
    von Essen R, Merx W, Effert S. Spontaneous course of ST-segment elevation-in acute anterior myocardial infarction. Circulation 59:105, 1979.PubMedGoogle Scholar
  58. 58.
    Mirvis DM. Body surface distributions of repolarization forces during acute myocardial infarction. Circulation 62:878, 1980.PubMedGoogle Scholar
  59. 59.
    Mirvis DM. Body surface distributions of repolarization forces during acute myocardial infarction II. Circulation 63:623, 1981.PubMedCrossRefGoogle Scholar
  60. 60.
    Fozzard HA, DasGupta DS. ST-segments and mapping; theory and experiments. Circulation 54:533, 1976.PubMedGoogle Scholar
  61. 61.
    Holland RP, Brooks HP. TQ-ST segment mapping: Critical review and analysis of current concepts. Am J Cardiol 40:110, 1977.PubMedCrossRefGoogle Scholar
  62. 62.
    Mirvis DM, Holbrook MA. Body surface distribution of repolarization potentials after acute myocardial infarction III. Dipole ranging in normal subjects and in patients with acute myocardial infarction. J Electrocardiol 14:387, 1981.PubMedCrossRefGoogle Scholar
  63. 63.
    van Dam RT, Heringa A, Uijen GJH, Geboers A. Diagnosis of acute apical infarction by body surface maps. Circulation 70 suppl. II: 13, 1984.Google Scholar
  64. 64.
    Ryabkina G. Cartographic indices by multiple 35 ECG-leads in inferior myocardial infarction. Adv Cardiol 28:214, 1981.Google Scholar
  65. 65.
    Shaposhnick, Gladishev P. Some experience in analysis of ECG mapping in acute myocardial infarction. Advances Cardiol 28:67, 1981.Google Scholar
  66. 66.
    Montague TJ, Smith ER, Spencer CA, Johnstone DE, Lalonde LD, Bessoudo RM, Gardner MJ, Anderson RN, Horace BM. Body surface electrocardiographic mapping in inferior myocardial infarction; manifestation of left and right ventricular involvement. Circulation 67: 665, 1983.PubMedCrossRefGoogle Scholar
  67. 67.
    Block P, Nyssen E, Dewilde P, Taeymans Y, Nyssen M, Demoor D, Cornelis J, Kornreich F. Diagnostic usefulness of ECG potential maps for noninvasive diagnosis of right ventricular infarction. In I Ruttkay-Nedecky and P Macfarlane (eds.), Electrocardiology ’83. Amsterdam: Excerpta Medica, 1984, p. 144.Google Scholar
  68. 68.
    Schubert E, Eckoldt K, Kastner R. The electric field of the cardiac repolarization in physical work. Adv Cardiol 16:32, 1976.PubMedGoogle Scholar
  69. 69.
    Mirvis DM, Keller FW, Cox JW, Zettergreen DG, Dowdie RF, Ideker RE. Left precordial isopotential mapping during supine exercise. Circulation 56:245, 1977.PubMedGoogle Scholar
  70. 70.
    Miller WT, Spach MS, Warren RB. Total body surface potential mapping during exercise: QRST-wave changes in normal young adults. Circulation 62:632, 1980.PubMedGoogle Scholar
  71. 71.
    Simoons ML, Block P. Toward the optimal lead system and optimal criteria for exercise electrocardiography. Am J Cardiol 47:1366, 1981.PubMedCrossRefGoogle Scholar
  72. 72.
    DeAmbroggi L, Macchi E, Brusoni B, Taccardi B. Electromaps during ventricular recovery in angina patients with normal resting ECG. Adv Cardiol 19:88, 1977.Google Scholar
  73. 73.
    Yanowitz FG, Vincent GM, Lux RL, Merchant M, Green LS, Abildskov JA. Application of body surface mapping for exercise testing: S-T80 Isoarea maps in patients with coronary artery disease. Am J Cardiol 50:1109, 1982.PubMedCrossRefGoogle Scholar
  74. 74.
    Kawakubo K, Murayama M, Kawahara T, Oshiro M, Mashima S, Murao S. Clinical usefulness of St mapping. Jpn Heart J 23, suppl I: 612, 1982.Google Scholar
  75. 75.
    Kubota I, Saito K, Watanabe Y, Tsuiki K, Yasui S. Treadmill exercise test using body surface mapping Jpn Heart J 22:871, 1981.PubMedCrossRefGoogle Scholar
  76. 76.
    Yasui S, Kubota I, Watanabe Y, Tsuiki K. Quantitative evaluation of treadmill test induced ST-T changes using body surface mapping. Jpn Circ J 45:1208, 1981.PubMedCrossRefGoogle Scholar
  77. 77.
    Mizuno Y, Wada M, Kaneko K, Kondo T, Hishida H. Exercise stress body surface ST potential distribution in ischemic heart disease. Comparison with myocardial stress perfusion scintigram and coronary angiogram. In K Yamada, K Harumi, T Musha, (eds.), Advances in Body Surface Potential Mapping. Nagoya: University of Nagoya Press, 1983, p. 235.Google Scholar
  78. 78.
    Kozmann G, Wolf T, Szlavik F, Preda I. Signal-to-noise ratio enhancing procedure for exercise body surface potential mapping. In I Ruttkay-Nedecky and PW Macfarlane (eds.), Electrocardiology ’83, Amsterdam: Excerpta Medica, 1984, p. 195.Google Scholar
  79. 79.
    Heringa A, Uijen GJH, van Dam RT. Feature extraction and statistical evaluation of body surface maps vs ECG. ibid. p. 199.Google Scholar
  80. 80.
    Amirov RZ: Terminology in electrocardiotopography. ibid. p. 154.Google Scholar

Copyright information

© Martinus Nijhoff Publishing 1987

Authors and Affiliations

  • Rudolph Th. van Dam

There are no affiliations available

Personalised recommendations