Skip to main content

Animal Tumor Models for Experimental Therapy

  • Chapter
Clinical Evaluation of Antitumor Therapy

Part of the book series: Developments in Oncology ((DION,volume 46))

Abstract

This chapter deals very briefly with animal tumor models for general approaches in therapy. It describes the specific requirements of models for different purposes: experimental surgery, experimental radiotherapy, and experimental immunotherapy. By far the largest part, however, is devoted to the subject of models for chemotherapy and, more specifically, models for the screening programs that attempt to identify new cytostatic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kallman RF, Silini G, Van Putten LM. Factors influencing the quantitative estimation of the in vivo survival of cells from solid tumors. J Natl Cancer Inst 39, 3: 539–549, 1967.

    Google Scholar 

  2. Hewitt HB, Blake ER, Stability of transplanted murine tumour systems after storage of cells at-196°C for up to 13 years. Br J Cancer 37: 718–722, 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Van Putten LM. Tumour reoxygenation during fractionated radiotherapy; studies with a transplantable mouse osteosarcoma. Eur J Cancer 4: 173–182, 1968.

    Article  Google Scholar 

  4. Van Putten LM, Van der Vecht B. Reoxygenation between radiotherapy fractions in an experimental osteosarcoma. Eur J Cancer Clin Oncol, (to be published).

    Google Scholar 

  5. Martin DS, Fugmann RA, Stolfi RL, Hayworth PE. Solid tumor animal model therapeutically predictive for human breast cancer. Cancer Chemother Rep, part 2, 5: 89–109, 1975.

    Google Scholar 

  6. Sandberg J, Goldin A. Use of first generation transplants of a slow growing solid tumor for the evaluation of new cancer chemotherapeutic agents. Cancer Chemother Rep 55: 233–238, 1971.

    PubMed  CAS  Google Scholar 

  7. Scholler J, Philips FS, Sternberg SS, Bittner JJ. A comparative study of chemotherapeutic agents in spontaneous mammary adenocarcinomas of mice and in transplants of recent origin. Cancer 9: 240–251, 1956.

    Article  PubMed  CAS  Google Scholar 

  8. Martin DS, Stolfi RL, Fugmann RA. Animal models for tumor immunotherapy—A commentary. Cancer Immunol Immunother 2: 77–79, 1977.

    Article  Google Scholar 

  9. Barendsen GW, Broerse JJ. Experimental radiotherapy of a rat rhabdomyosarcoma with 15 MeV neutrons and 300 kV x-rays. I. Effects of single exposures. Eur J Cancer 5: 373–391, 1969.

    Article  PubMed  CAS  Google Scholar 

  10. Rockwell S. In vivo—in vitro tumour cell lines: Characteristics and limitations as models for human cancer. Br J Cancer 41,Suppl IV: 118–122, 1980.

    Google Scholar 

  11. Scott OCA, The choice of experimental tumour systems. Br J Cancer 41,Suppl IV. 112–117, 1980.

    Google Scholar 

  12. Scott OCA. Some observations on the use of transplanted tumors in radiobiological research. Radia Res 14: 643–652, 1961.

    Article  CAS  Google Scholar 

  13. Hewitt HB, Blake ER, Walder AS. A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br J Cancer 33: 241–259, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Goldin A, Carter S, Mantel N. Evaluation of antineoplastic activity: Requirement of test systems. In Handbook of Experimental Pharmacology XXXVIII/1._Berlin: Springer Verlag, 1974, pp. 12–32.

    Google Scholar 

  15. Connors TA, Phillips BJ. Screening for anti-cancer agents, the relative merits of in vitro and in vivo screening. Biochem Pharmacol 24: 2217–2224, 1975.

    Article  PubMed  CAS  Google Scholar 

  16. Connors TA, Roe FJC. Antitumour agents. In Evaluation of Drug Activities: Pharmacometrics, Laurence DR, Bacharach AL (eds.). London: Academic Press, 1964, pp. 827–874.

    Google Scholar 

  17. Schabel FM Jr. Animal models as predictive systems. In Cancer Chemotherapy—Fundamental Concepts and Recent Advances. Chicago: Year Book Medical Publishers, 1975, pp. 323–355.

    Google Scholar 

  18. Crooke ST. Development of antineoplastic agents by pharmaceutical companies. Federation proceedings 38: 108–112, 1974.

    Google Scholar 

  19. Schabel FM Jr. Laboratory methods for the detection and development of clinically useful anticancer drugs. In Cancer 1980 Achievements, Challenges, Prospects. New York: Grune & Stratton, 1981.

    Google Scholar 

  20. EORTC Screening Group. Handbook of materials and methods. Eur J Cancer 8: 185–196, 1972

    Article  Google Scholar 

  21. USA-USSR Monograph. Methods of development of new anticancer drugs. NCI Monograph 45._DHEW Publication no (NIH) 761037._Bethesda 1979.

    Google Scholar 

  22. Goldin A, Serpick AA, Mantel N. A commentary—Experimental screening procedures and clinical predictability value. Cancer Chemother Rep 50: 173–218, 1966.

    PubMed  CAS  Google Scholar 

  23. Narayanan VL. Strategy for the discovery and development of novel anticancer agents. In Structure-Activity Relationships of Antitumour Agents, Reinhoudt DN, Connors TA, Pinedo HM, Van de Poll KW (eds.). The Hague: Martinus Nijhoff, 1983, pp. 5–22.

    Google Scholar 

  24. Gellhorn A, Hirschberg EH. Investigation of diverse systems for cancer chemotherapy screening. Cancer Res, Suppl 3: 1–115, 1955.

    Article  Google Scholar 

  25. Geran RI, Greenberg NH, McDonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems (third edition). Cancer Chemother Rep, Part 3, 3(2): 1–103, 1972.

    Google Scholar 

  26. Zubrod CG, Schepartz SA, Carter SK. Methods of development of new anticancer drugs. NCI Monograph 45._DHEW Publication no (NIH) 761037._Bethesda 1979, pp. 7–11.

    Google Scholar 

  27. Vandendris M, Dumont P, Heimann R, Atassi G. Development and characterization of a new murine renal tumor model: Chemotherapeutic results. Cancer Chemother Pharmacol 11: 182–187, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Vandendris M, Dumont P, Senal R, Heimann R, Atassi G. Investigation of a new murine model of regional lymph node metastasis: Characteristics of the model and application. Clin Exp Metastasis 3: 7–19, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Goldin A, Venditti JM, MacDonald JS, Muggia FM, Henney JE, DeVita VT. Current results of the screening program of the division of cancer treatment. National Cancer Institute. Eur J Cancer 17: 129–142, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Atassi G, Staquet M. The clinical predictive value of mouse screening methods for anticancer agents. In Anticancer Drug Development, Hilgard P, Hellmann K (eds.). Barcelona: Prous, 1983, pp. 27–34.

    Google Scholar 

  31. Rothenberg L, Terselic RA. Management of the National Cancer Institute’s drug research program through application of the linear array concept. Cancer Chemother Rep 54: 303–310, 1970.

    PubMed  CAS  Google Scholar 

  32. Connors TA, Crunch AJ, Ross WCJ, Clark SA, Mitchley BCV. Regression of human lung tumor xenografts induced by water-soluble analogs of hexamethylmelamine. Cancer Treat Rep 61: 927–928, 1977.

    PubMed  CAS  Google Scholar 

  33. Rutty CJ, Connors TA. In vitro studies with hexamethylmelamine. Biochem Pharmacol 26: 2385–2391, 1977.

    Article  PubMed  CAS  Google Scholar 

  34. Rutty CJ, Connors TA, Nguyen-Hoang-Nam, Do-Cao-Thang, Hollinger H. In vivo studies with hexamethylmelamine. Eur J Cancer 14: 713–720, 1978.

    Article  PubMed  CAS  Google Scholar 

  35. Rutty CJ, Newell DR, Muindi JRF, Harrap KR. The comparative pharmacokinetics of pentamethylmelamine in man, rat and mouse. Cancer Chemother Pharmacol 8: 105–111, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Rutty CJ. The species dependent pharmacokinetics of DTIC. Paper presented at meeting of the EORTC Pharmacokinetics and Metabolism Group, Nice, 8 December 1982.

    Google Scholar 

  37. Bogden AE, Delton DE, Cobb WR, Esber HJ. A rapid screening method for testing chemotherapeutic agents against human tumor xenografts. In Proceedings of the Symposium on the Use of Athymic (Nude) Mice in Cancer Research, Houchens DP, Ovejera AA (eds.). New York: Gustav Fisher, 1978, pp. 231–250.

    Google Scholar 

  38. Bogden AE, Cobb WR, Lepage DJ, Haskell PM, Gulkin TA, Ward A, Kelton DE, Esber HJ. Chemotherapy responsiveness of human tumors as first transplant generation xenografts in the normal mouse. Cancer 48: 10–20, 1981.

    Google Scholar 

  39. Edelstein MB, Fiebig HH, Smink T, Van Putten LM, Schuchardt C. Comparison between macroscopic and microscopic evaluation of tumour responsiveness using the subrenal capsule assay. Eur J Cancer Clin Oncol 19: 995–1009, 1983.

    Article  PubMed  CAS  Google Scholar 

  40. Edelstein MB, Smink T, Ruiter DJ, Visser W, Van Putten LM. Improvements and limitations of the subrenal capsule assay for determining tumour sensitivity to cytostatic drugs. Eur J Cancer Clin Oncol 20: 1549–1556, 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Van Putten LM, Middeldorp RJF. Comparison of platinum derivatives for effectiveness against human tumours in vivo. Unpublished observations.

    Google Scholar 

  42. Zeller WJ, Ivanovic S, Schmähl D. Chemotherapy of the transplantable acute leukemia L5222 in rats. Cancer Res 35: 1168–1174, 1975.

    PubMed  CAS  Google Scholar 

  43. Colly LP, Töns A, Hagenbeek A. Experimental chemotherapy in the BN myelocytic leukemia. Leukemia Res 1: 247–250, 1977.

    Article  CAS  Google Scholar 

  44. Van Putten LM, Edelstein MB. Animal models for drug scheduling. In Cancer Chemotherapy I, Muggia FM (ed.). The Hague: Martinus Nijhoff, 1983, pp. 31–64.

    Google Scholar 

  45. Tsaboi KK, Edmunds HN, Kwong LK. Selective inhibition of pyrimidine biosynthesis and effect on proliferative growth of colonic cancer cells. Cancer Res 37: 3080–3087, 1977.

    Google Scholar 

  46. Schabel FM Jr, Laster WR Jr, Rose WC. Experimental chemotherapy and tumor cell kinetics. Overview of Experimental Tumor System in Treatment of Lung Cancer. New York: Raven Press, vol. 11, pp. 15–85.

    Google Scholar 

  47. Rubin J, Purvis J, Britell JC, Hahn RG, Moertel CG, Schutt AJ. Phase II study of PALA in advanced large bowel carcinoma. Cancer Treat Rep 65: 335–336, 1981.

    PubMed  CAS  Google Scholar 

  48. Corbett TH, Griswold DP, Roberts BJ, Peckham JC, Schabel FM Jr. Evaluation of single agents and combinations of chemotherapeutic agents in mouse colon carcinomas. Cancer 40: 2660–2680, 1977.

    Article  PubMed  CAS  Google Scholar 

  49. Screening data from the Drug Evaluation Branch, DTC, NCI, Cited in ref. 50.

    Google Scholar 

  50. VonHoff DD, Howser D, Gormley P, Bender RA, Glaubiger D, Levine AS, Young RC. Phase I study of methane sulfonamide N-(4-(9-acridylamino)-3-methoxyphenyl) (m-Amsa) using a single dose schedule. Cancer Treat Rep 62: 1421–1426, 1978.

    Google Scholar 

  51. Carroll DS, Kemeny N, Lynch G, Woodcock T. Phase II evaluation of 4′-(9-acridylamino)-methanesulfonmanisidide AMSA in patients with advanced colorectal carcinoma. Cancer Treat Rep 64: 1149–1150, 1980.

    PubMed  CAS  Google Scholar 

  52. Ferraro JA, Horton J, Weissman C, Ruckdeschel JC, O’Donnell M, Ludlum D. Treatment of advanced colorectal carcinoma with AMSA. Cancer Treat Rep 65: 345–347, 1981.

    PubMed  CAS  Google Scholar 

  53. Screening data from the Drug Evaluation Branch DCT NCI.

    Google Scholar 

  54. Bukowski R, Vaughn C, Bottomley R, Chen T. Phase II study of anguidine in gastrointestinal malignancies: A Southern Oncology Group Study. Cancer Treat Rep 66: 381–383, 1982.

    PubMed  CAS  Google Scholar 

  55. Murphy WK, Burgess MA, Valdivieso M, Bodey GP. Anguidine and early phase II study in colorectal adenocarcinoma. Proc AM Assoc Cancer Res 19: 411, 1978.

    Google Scholar 

  56. Arcamone F. Structure-activity relationships among antitumour quinones. In Structure-Activity Relationships of Anti-tumour Agents, Reinhoudt DN, Connors TA, Pinedo HM, Van de Poll KW (eds.). The Hague: Martinus Nijhoff, 1983, pp. 111–133.

    Google Scholar 

  57. Eisenbrand G, Habs M, Zeller WJ, Fiebig H, Berger M, Zelesny O, Schmähl D. New nitrosoureas—therapeutic and long term toxic effects of selected compounds in comparison to established drugs. In Nitrosoureas in Cancer Treatment, Sernon B, Schein PS, Imbach J-L (eds.). New York: Elsevier North Holland, 1981, pp. 175–191.

    Google Scholar 

  58. Spreafico F, Filippeschi S, Falautano P, Eisenbrand G, Fiebig HH, Habs M, Zeller V, Berger M, Schmahl D, Van Putten LM, Smink T, Csanyi E, Somfai-Relle S. EORTC studies with novel nitrosoureas. In Nitrosoureas, Current Status and New Developments, Prestayko AW, Crooke ST, Baker LH, Carter SK, Schein PS (eds.). New York: Academic Press, 1971, pp. 27–42.

    Google Scholar 

  59. Harrap KR. Platinum analogues: Criteria for selection. In Cancer Chemotherapy I, Muggia FM (ed.). The Hague: Martinus Nijhoff, 1983, pp. 171–217.

    Google Scholar 

  60. DiMarco A, Gaetani M, Scarpinato B. Adriamycin (NSC 123127) a new antibiotic with antitumour activity. Cancer Chemother Rep 53: 33–37, 1969.

    PubMed  Google Scholar 

  61. Sikic BI, Eksan MN, Harker WG, Friend NF, Brown BW, Newman RA, Hacker MP, Acton EM. Dissociation of antitumour potency from anthracycline cardiotoxicity in a doxorubicin analog. Science 228: 1544–1546, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

van Putten, L.M. (1987). Animal Tumor Models for Experimental Therapy. In: Muggia, F.M., Rozencweig, M. (eds) Clinical Evaluation of Antitumor Therapy. Developments in Oncology, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2317-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2317-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9425-2

  • Online ISBN: 978-1-4613-2317-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics