The Neuroendocrine System

  • William F. Ganong
Part of the Topics in the Neurosciences book series (TNSC, volume 2)


For many years, the nervous system and the endocrine system were considered to be separate and quite different integrating systems. The nervous system was believed to produce responses mediated by chemical messengers that were small, rapidly acting, and rapidly metabolized molecules that exerted their effects in a very circumscribed region. The endocrine system, on the other hand, was viewed as a system that secreted large molecules into the general circulation and produced long-lasting, often general effects.


Vasoactive Intestinal Peptide Endocrine Cell Gland Cell Adrenal Medulla Median Eminence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, G.W. 1955. Neural Control of the Pituitary Gland. Edward Arnold, Ltd., London.Google Scholar
  2. 2.
    Hume, D.M. and Wittenstein, G.J. 1950. The relationship of the hypothalamus to pituitary-adrenocortical function. Proc. 1st Clin. ACTH Conference, pp. 134–146, J.R. Mote, ed., Blakiston and Company, Philadelphia.Google Scholar
  3. 3.
    Ganong, W.F. 1982. The brain as an endocrine organ. Acta Physiologica Latino America 32, 31–44.Google Scholar
  4. 4.
    Ganong, W.F. 1985. Neuroendocrinology. In: Basic and Clinical Endocrinology, F.S. Greenspan and P.H. Forsham, editors, 2nd edition, Lange Medical Publications, Los Altos, California, (in press).Google Scholar
  5. 5.
    Bennett, M.V.L. and Goodenough, D.A. 1978. Gap junctions, electronic coupling, and intracellular communication. Neurosci. Res. Prog. Bull. 16, 375–400.Google Scholar
  6. 6.
    Scharrer, E. and Scharrer, B. 1954. Hormones produced by neurosecretory cells. Recent Prog. Horm. Res. 10, 183–240.Google Scholar
  7. 7.
    Brownstein, M.J., Russell, J.T., Gainer, H. 1980. Synthesis, transport, and release of posterior pituitary hormones. Science 207, 373–378.PubMedCrossRefGoogle Scholar
  8. 8.
    Nordman, J.J. 1983. Stimulus-secretion coupling in the neurohypophysis: structure, function and control. In: Progress in Brain Research, volume 60, B.A. Cross and G. Leng, editors, Elsevier, Amsterdam, pp. 281–304.Google Scholar
  9. 9.
    Schwartz, J.H. 1979. Axonal transport: components, mechanisms and specificity. Ann. Rev. Neurosci. 2, 467–504.PubMedCrossRefGoogle Scholar
  10. 10.
    Richter, D., Schmale, H., Ivell, R. and Rehbein, M. 1984. The molecular basis of neurohypophyseal hormone expression. In: Endocrinology, pp.885-890, F. Labrie and L. Proulx, editors, Excepta Medica, Amsterdam.Google Scholar
  11. 11.
    Eiper, B.A. and Mains, R.E. 1980. Structure and biosynthesis of pro-ACTH/endorphin and related peptides. Endocrine Reviews 1, 1–27.CrossRefGoogle Scholar
  12. 12.
    Ivell, R., Schmale, H. and Richter, D. 1983. Vasopressin and oxytocin precursors as model preprohormones. Neuro-endocrinology 37, 235–240.PubMedCrossRefGoogle Scholar
  13. 13.
    Ganong, W.F. 1985. Review of Medical Physiology, 12 edition, Lange Medical Publications, Los Altos, California.Google Scholar
  14. 14.
    Pedersen, R.C., Brownie, A.C. and Ling, M. 1980. Pro-adrenocorticotropin/endorphin derived peptides: coordinate action on adrenal steroidogenesis. Science 208, 1044–1046.PubMedCrossRefGoogle Scholar
  15. 15.
    Elde, R., and Hökfelt, T. 1978. Distribution of hypothalamic hormones and other peptides in the brain. In: Frontiers in Neuroendocrinology, volume 5, pp. 1–53, W.F. Ganong and L. Martini, editors, Raven Press, New York.Google Scholar
  16. 16.
    Schusdziarra, V., Zyznar, E., Rouiller, D., Boden, G., Brown, J.C., Arimura, A. and Ungerr, H. 1980. Splanchnic somatostatin: a hormonal regulator of nutrient homeostasis. Science 207, 530–532.PubMedCrossRefGoogle Scholar
  17. 17.
    Rappaport, S.I. 1976. Blood-brain Barrier in Physiology and Medicine. Raven Press, New York.Google Scholar
  18. 18.
    Ramsay, D.J. 1982. Effects of circulating angiotensin II on the brain. In: Frontiers in Neuroendocrinology, volume 7, pp. 263–286, W.F. Ganong and L. Martini, editors, Raven Press, New York.Google Scholar
  19. 19.
    Goldsmith, P.C., Rose, J.C. Arimura, A. and Ganong, W.F. 1975. Ultrastructural localization of somatostatin and pancreatic islets of the rat. Endocrinology 97, 1061–1064.PubMedCrossRefGoogle Scholar
  20. 20.
    Larsson, L.I., Golterman, N., de Magistris, L., Rehfeld, J.F. and Schwartz, T.W. 1979. Somatostatin cell precesses as pathways for paracrine secretion. Science 205, 1393–1395.PubMedCrossRefGoogle Scholar
  21. 21.
    Cooper, J.R., Bloom F.E. and Roth R.H. 1978. Biochemical Basis of Neuropharmacology 3rd edition, Oxford University Press, New York.Google Scholar
  22. 22.
    Freed, W.J., Morihisa, J.M., Spoor, E., Hoffer, B.J., Olson, L., Seiger, A. and Wyatt, R.J. 1981. Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature 292, 351–352.PubMedCrossRefGoogle Scholar
  23. 23.
    Kolata, G. 1983. Brain grafting work shows promise. Science 221, 1277.PubMedCrossRefGoogle Scholar
  24. 24.
    Goldberg, L.I. 1972. Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacological Reviews 24, 1–79.PubMedGoogle Scholar
  25. 25.
    Shepherd, J.T. and Vanhoutte, P.M. 1979. The Human Cardiovascular System, Raven Press, New York.Google Scholar
  26. 26.
    Moore, R.Y. and Bloom, F.E. 1979. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Ann. Rev. Neurosci. 2, 113–168.PubMedCrossRefGoogle Scholar
  27. 27.
    Descarries, L., Watkins, K.C. and Lapierre, Y. 1977. Noradrenergic axon terminals in the cerebral cortex of the rat. III. Topometric ultrastructural analysis. Brain Res. 133, 197–222.PubMedCrossRefGoogle Scholar
  28. 28.
    Swanson, L.W., Connelly, M.A. and Hartman, B.K. 1978. Further studies on the fine structure of the adrenegic innervation of the hypothalamus. Brain Res. 151, 165–174.PubMedCrossRefGoogle Scholar
  29. 29.
    Hsueh, A.J.W. and Jones, P.B.C. 1983. Gonadotropin releasing hormone: extrapituitary actions and paracrine control mechanisms. Ann. Rev. Physiol. 45, 83–94.CrossRefGoogle Scholar
  30. 30.
    Jan, L.Y. and Jan, Y.N. 1982. LHRH-like peptide as a transmitter in sympathetic ganglia. In: Frontiers in Neuroendocrinology, volume 7, pp.211–230, W.F. Ganong and L. Martini, editors, Raven Press, New York.Google Scholar
  31. 31.
    Said, S.I. 1980. Peptides common to the nervous system in the gastrointestinal tract. In: Frontiers in Neuroendocrinolocfy, volume 6,pp. 293–331, L. Martini and W.F. Ganong, editors, Raven Press, New York.Google Scholar
  32. 32.
    Lundberg, J.M., Anggard, A., Fahrenkrug, J., Johansson, O. and Hokfelt, T. 1982. Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands. In: Vasoactive Intestinal Peptide, pp. 373–389, S.I. Said, editor, Raven Press, New York.Google Scholar
  33. 33.
    Schachter, B.S., Durgerian, S., Harlan, R.E., Pfaff, D.W. and Shivers, B.B. 1984. Prolactin mRNA exists in rat hypothalamus. Endocrinology 114, 1947–1949.PubMedCrossRefGoogle Scholar
  34. 34.
    Pacold, S.T., Kristeins, L., Hojvat, S., Lawrence, A.M. and Hagen, T.C. 1978. Biologically active pituitary hormones in the rat brain amygdaloid nucleus. Science 199, 804–806.PubMedCrossRefGoogle Scholar
  35. 35.
    Hostetter, G., Gallo, R.V. and Brownfield, M.S. 1981. Presence of immunoreactive luteinizing hormone in the rat forebrain. Neuroendocrinology 33, 241–245.PubMedCrossRefGoogle Scholar
  36. 36.
    Nussey, S.S., Ang, V.T.Y., Jenkins, J.S., Chowdrey, H.S. and Bisset, G.W. 1984. Brattleboro rat adrenal contains vasopressin. Nature 310, 64–66.PubMedCrossRefGoogle Scholar
  37. 37.
    Swanson, L.W. and McKellar, S. 1979. The distribution of oxytocin- and neurophysin-stained fibers in the spinal cord of the rat and monkey. J. Comp. Neurol. 188, 87–106.PubMedCrossRefGoogle Scholar
  38. 38.
    Bradshaw, R.W. 1978. Nerve growth factor. Ann. Rev. Biochem. 27, 191–216.CrossRefGoogle Scholar
  39. 39.
    Grimm-Jorgensen, Y., McKelvy, J.F. and Jackson, I.M.D. 1975. Immunoreactive thyrotropin releasing factor in gastropod circumerophageal ganglia. Nature 254, 620–621.PubMedCrossRefGoogle Scholar
  40. 40.
    Loumaye, E., Thorner, J. and Catt, K.J. 1982. Yeast mating pheromone activates mammalian gonadotrophs: evolutionary conservation of a reproductive hormone. Science 218, 1324–1325.CrossRefGoogle Scholar
  41. 41.
    LeRoith, D. and Roth, J. 1984. Vertebrate hormones and neuropeptides in microbes: evolutionary origin of intercellular communication.In: Frontiers in Neuroendocrinology volume 8, pp. 1–25, L. Martini and W.F. Ganong, editors, Raven Press, New York.Google Scholar
  42. 42.
    Patterson, P.H. 1978. Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci. 1, 1–17.PubMedCrossRefGoogle Scholar
  43. 43.
    Teitelman, G., Joh, T.H. and Reis, D.J. 1981. Transformation of catecholaminergic precursors into glucagon (A) cells in mouse embryonic pancreas. Proc. Natl. Acad. Sci. USA 78, 5225–5229.PubMedCrossRefGoogle Scholar
  44. 44.
    Jan, Y.N., Jan, L.Y. and Kuffler, S.W. 1980. Further evidence for peptidergic transmission in sympathetic ganglia. Proc. Natl. Acad. Sci. USA 77, 5008–5012.PubMedCrossRefGoogle Scholar

Copyright information

© Matinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • William F. Ganong
    • 1
  1. 1.Department of PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations