Biphasic Effect of Calcium on Tetanic Potentiation at the Frog Neuromuscular Junction

  • R. Fink
  • S. Ginsburg
  • R. Rahamimoff
Part of the Topics in the Neurosciences book series (TNSC, volume 1)


High frequency stimulation of the motor nerve produces an increase in transmitter release, termed tetanic potentation. Previous work showed that calcium ions in the extracellular medium are an important factor in generating tetanic potentiation (Rosenthal, 1969; Weinreich, 1971. Using spontaneous mepps as an indicator of transmitter release, it was suggested that accumulation of calcium ions inside the nerve terminal is largely responsible for this phenomenon (Erulkar, Rahamimoff & Rotshenker 1978; Erulkar & Rahamimoff, 1978; Lev-Tov & Rahamimoff 1980; Rahamimoff, Lev-Tov & Meiri, 1980). The increase in intracellular calcium is presumably caused by calcium entering the terminal via the surface membrane and by calcium released from intracellular stores. Regardless of its origin, it is expected that such elevated intracellular calcium may produce a change in the relationship between transmitter release and extracellular calcium.


Intracellular Calcium Neuromuscular Junction Transmitter Release Tetanic Stimulation Cooperative Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alnaes, E. and Rahamimoff, R. (1975) On the role of mitochondria in transmitter release from motor nerve terminals. J. Physiol. 248: 285–306.PubMedGoogle Scholar
  2. 2.
    Barton, S.B., Cohen, I. & Van der Kloot, W. (1983). The calcium dependence of spontaneous and evoked release at the frog neuromuscular junction. J. Physiol. 337: 735–752.PubMedGoogle Scholar
  3. 3.
    Crawford, A.C. (1974) The dependence of evoked transmitter release on external calcium ions at very low mean quantal contents. J. Physiol. 240: 255–278.PubMedGoogle Scholar
  4. 4.
    Dodge, F.A. and Rahamimoff, R. (1967) Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 294: 91–103.Google Scholar
  5. 5.
    Erulkar, S.D. and Rahamimoff, R. (1978) The role of calcium ions in tetanic and post-tetanic increase of miniature end plate potentials frequency. J. Physiol. 278: 501–511.PubMedGoogle Scholar
  6. 6.
    Erulkar, S.D., Rahamimoff, R. and Rotshenker, S. (1978). Quelling of spontaneous transmitter release by nerve impulses in low extracellular calcium solutions. J. Physiol. 278: 491–500.PubMedGoogle Scholar
  7. 7.
    Jenkinson, D.H. (1957). The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J. Physiol. 138: 434–444.PubMedGoogle Scholar
  8. 8.
    Katz, B. and Miledi, R. (1968) The role of calcium in neuromuscular facilitation. J. Physiol. 195: 481–492.PubMedGoogle Scholar
  9. 9.
    Katz, B. and Miledi, R. (1969) Tetrodotoxin resistant activity in presynaptic terminals. J. Physiol. 203: 459–487.PubMedGoogle Scholar
  10. 10.
    Lev-Tov, A. and Rahamimoff, R. (1980) A study of tetanic and post-tetanic potentiation of miniature endplate potentials at the frog neuromuscular junction. J. Physiol. 309: 247–273.PubMedGoogle Scholar
  11. 11.
    Llinas, R. and Nicholson, C. (1975) Calcium in depolarization secretion coupling: an aequorin study in squid giant synapse. Proc. Nat. Acad. Sci., U.S.A. 72: 187–190.CrossRefGoogle Scholar
  12. 12.
    Miledi, R. (1973) Transmitter release induced by injection of calcium ions into nerve terminals. Proc. R. Soc. B. 183: 421–425.CrossRefGoogle Scholar
  13. 13.
    Parnas, H. and Segel, L.A. (1981) A theoretical study of calcium entry in nerve terminals, with application to neurotransmitter release. Theor. Biol. 91: 125–169.CrossRefGoogle Scholar
  14. 14.
    Rahamimoff, R. (1968) A dual effect of calcium ions on neuromuscular facilitation. J. Physiol. 195: 471–480.PubMedGoogle Scholar
  15. 15.
    Rahamimoff, R. and Alnaes, E. (1973) Inhibitory action of Ruthenium red on neuromuscular transmission. Proc. Nat. Acad. Sci. U.S.A. 70: 3613.CrossRefGoogle Scholar
  16. 16.
    Rahamimoff, R., Lev-Tov, A. and Meiri, H. (1980). Primary and secondary regulation of quantal transmitter release: Calcium and Sodium. J. Exp. Biol. 89: 5–18.PubMedGoogle Scholar
  17. 17.
    Rosenthal, J. (1969) Post-tetanic potentiation at the neuromuscular junction of the frog. J. Physiol. 203: 121–133.PubMedGoogle Scholar
  18. 18.
    Smith, S.J. and Zucker, R.S. (1980) Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. J. Physiol. 300: 167–196.PubMedGoogle Scholar
  19. 19.
    Weinreich, D. (1971) Ionic mechanism of post-tetanic potentiation at the neuromuscular junction of the frog. J. Physiol. 212: 431–446.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • R. Fink
    • 1
  • S. Ginsburg
    • 1
    • 2
  • R. Rahamimoff
    • 1
  1. 1.Department of PhysiologyHebrew University — Hadassah Medical SchoolJerusalemIsrael
  2. 2.Everyman’s UniversityTel-AvivIsrael

Personalised recommendations