Skip to main content

Serendiptic Modulation of Transmitter Release: Extracellular Calcium Inhomogeneity

  • Chapter
Book cover Calcium, Neuronal Function and Transmitter Release

Part of the book series: Topics in the Neurosciences ((TNSC,volume 1))

Summary

The amplitude and quantal content of synaptic potentials at the neuromuscular synapse of the frog are extremely sensitive to the calcium concentration in the extracellular solution (Jenkinson, 1957; Dodge & Rahamimoff, 1967). When the calcium concentration in the bathing solution is clamped at a constant level by employing a suitable calcium buffer, the average endplate potential amplitude and quantal content are reduced relative to those measured in a Ringer with a similar yet unbuffered free calcium concentration (Ginsburg & Rahamimoff, 1983). This may indicate that the calcium concentration in the extracellular space is inhomogenous, and that normally, its level in the synaptic cleft is probably higher than in the bulk solution. Possible origins for the calcium inhomogeneity may be extracellular matrix components and calcium transporters situated in the synaptic membranes facing the cleft; changes in their distributions and densities may provide the nerve terminal with energetically economical mechanisms for self-regulating synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alnaes E. and Rahamimoff R. (1975). The role of mitochondria in transmitter liberation from motor nerve terminals. J. Physiol. 248, 285–306.

    PubMed  CAS  Google Scholar 

  2. Anderson C.R. and Stevens C.F. (1973). Voltage clamp analysis of acetylcholine produced endplate current fluctuations at frog neuromuscular junctions. J. Physiol. 235, 655–691.

    PubMed  CAS  Google Scholar 

  3. Attwell D. and Iles J.F. (1979). Synaptic transmission: ion concentration changes in the synaptic cleft. Proc. R. Soc. Lond. B. 206, 115–131.

    Article  PubMed  CAS  Google Scholar 

  4. Dani J.A., Sanches J.A. and Hille B. (1983). Lyotropic anions: Na channel gating and Ca electrode response. J. Gen. Physiol. 81, 255–281.

    Article  PubMed  CAS  Google Scholar 

  5. del Castillo J. and Katz B. (1954). Quantal components of the endplate potentials. J. Physiol. 124, 560–573.

    Google Scholar 

  6. Dionne V.E., Steinbach J.H. and Stevens CD. (1978). An analysis of the dose-response relationship of voltage-clamped frog neuromuscular junctions. J. Physiol. 281, 421–444.

    PubMed  CAS  Google Scholar 

  7. DiPolo R. and Beauge L. (1980). Mechanisms of calcium transport in the giant axon of the squid and their physiological role. Cell Calcium 1, 147–169.

    Article  CAS  Google Scholar 

  8. Dodge F.A. and Rahamimoff R. (1967). Co-operative action of calcium ions in transmitter release at the neuromuscular Junction. J. Physiol. 193, 419–432.

    PubMed  CAS  Google Scholar 

  9. Fatt P. and Katz B. (1951). An analysis of endplate potential recorded with an intracellular electrode. J. Physiol. 115, 320–370.

    PubMed  CAS  Google Scholar 

  10. Field T.B., Coburn J., McCourt J.L. and McBryde W.A.E. (1975). Composition and stability of some metal citrate and diglycolate complexes in aqueous solutions. Analytica Chim. Acta 74, 101–106.

    Article  CAS  Google Scholar 

  11. Gage P.W. (1976). Generation of endplate potentials. Physiol. Rev. 56, 177–247.

    CAS  Google Scholar 

  12. Ginsburg S. and Rahamimoff R. (1983). Is extracellular calcium buffering involved in regulation of transmitter release at the neuromuscular Junction? Nature 306, 62–64.

    Article  PubMed  CAS  Google Scholar 

  13. Jenklnson D.H. (1957). The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J. Physiol. 138, 434–444.

    Google Scholar 

  14. Katz B. and Miledi R. (1965a). The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. Lond. B. 161, 496–503.

    Article  PubMed  CAS  Google Scholar 

  15. Katz B. and Miledi R. (1965b). Propagation of electric activity in motor nerve terminals. Proc. R. Soc. Lond. B. 161, 453–482.

    Article  PubMed  CAS  Google Scholar 

  16. Katz B. and Miledi R. (1966). Input-output relation of a single synapse. Nature 212, 1242–1245.

    Article  PubMed  CAS  Google Scholar 

  17. Katz B. and Miledi R. (1973). The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. 231, 549–574.

    PubMed  CAS  Google Scholar 

  18. Katz B. and Schmitt O.H. (1940). Electric interaction between two adjacent nerve fibres. J. Physiol. 97, 471–488.

    PubMed  CAS  Google Scholar 

  19. Kraemer P.M. (1979). Mycopolysacharides: Cell biology and malignancy. In: Surfaces of Normal and Malignant Cells, R.O. Hynes (Ed.), Wiley, N.Y., pp.149–198.

    Google Scholar 

  20. Ledeen R.W. (1978). Ganglloside structures and distributions: are they localzed at nerve endings? J. Supramol. Struct. 8, 1–17.

    Article  CAS  Google Scholar 

  21. Luft J.H. (1971). Ruthenium red and violet II: fine structural localization in animal tissues. Anat. Rec. 171, 369–416.

    Article  PubMed  CAS  Google Scholar 

  22. McMahan U.J., Edgington D.K, and Kuffler D.P. (1980). Factor that influence regeneration of the neuromuscular junction. J. Exp. Biol. 89, 31–42.

    PubMed  CAS  Google Scholar 

  23. Magleby K.L. and Stevens C.F. (1972). A quantitative description of endplate currents. J. Physiol. 223, 173–197.

    PubMed  CAS  Google Scholar 

  24. Miledi R. (1973). Transmitter release induced by injection of calcium ions into nerve terminals. Proc. R. Soc. Lond. B. 183, 421–425.

    Article  PubMed  CAS  Google Scholar 

  25. Neher E. and Sakmann B. (1976). Single channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–801.

    Article  PubMed  CAS  Google Scholar 

  26. Nitkin R.M., Wallace B.G., Spira M.E., Godfrey E.W. and McMahan U.J. (1983). Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions. Cold Spring Harbor Symposia on Quantitative Biology, Vol. XLVIII, part 2, pp. 653–665.

    Google Scholar 

  27. Rahamimoff R., Erulkar S.D., Lev-Tov A. and Meiri H. (1978a). Intracellular and extracellular calcium ions in transmitter release at the neuromuscular synapse. Ann. N.Y. Acad. Sci. 307, 583–598.

    Article  PubMed  CAS  Google Scholar 

  28. Rahamimoff R., Meiri H., Erulkar S.D. and Barenholz Y. (1978b). Changes in transmitter release induced by ion containing liposomes. Proc. Natl. Acad. Sci. USA 75, 5214–5216.

    Article  CAS  Google Scholar 

  29. Ross J.W. (1967). Calcium-selective electrode with liquid ion exchanger. Science 156, 1378–1379.

    Article  PubMed  CAS  Google Scholar 

  30. Sanes J.R. (1983). Roles of extracellular matrix in neural development. Ann. Rev. Physiol. 45, 581–600.

    Article  CAS  Google Scholar 

  31. Scarpa A. (1972). Spectrophotometric measurement of calcium by murexide. Meth. Enzym. 24, 343–351.

    Article  PubMed  CAS  Google Scholar 

  32. Sillen L.G. and Martell A.E. (1964). Stability constants of metal ion complexes. Chem. Soc. Spec. Publ. 17, London.

    Google Scholar 

  33. Takeuchi A. and Takeuchi N. (1960). On the permeability of endplate membrane during the action of transmitter. J. Physiol. 154, 52–67.

    PubMed  CAS  Google Scholar 

  34. Takeuchi N. (1963). Effects of calcium on conductance change of the endplate membrane during the action of transmitter. J. Physiol. 167, 141–155.

    PubMed  CAS  Google Scholar 

  35. Veh R.W. and Sander M. (1981). Differentiation between gangliosides and sialyllactose sialidases in human tissues. Perspectives in Inherited Metabolism Diseases 4, 71–109.

    Article  Google Scholar 

  36. Yamada K.M., Olden K. and Liang-Hsien E.H. (1980). Cell surface protein and cell interactions. In: The Cell Surface: Mediator of Developmental Processes, S. Subtelny and N. Vessel (Eds.), Academic Press, N.Y., pp.43–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Ginsburg, S., Rahamimoff, R. (1986). Serendiptic Modulation of Transmitter Release: Extracellular Calcium Inhomogeneity. In: Rahamimoff, R., Katz, B. (eds) Calcium, Neuronal Function and Transmitter Release. Topics in the Neurosciences, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2307-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2307-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9420-7

  • Online ISBN: 978-1-4613-2307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics