Hormonal Regulation of Metastases: Prospects for Pharmacological Manipulation

  • Russell G. Greig
Part of the Developments in Oncology book series (DION, volume 41)

Abstract

Many biological processes operate under strict paracrine and endocrine control and aberrations in these regulatory mechanisms can result in the development of disease. For decades this fundamental realization has provided the intellectual infrastructure for the design and development of several classes of pharmacological agents that have subsequently demonstrated efficacy against a spectrum of important human diseases, including diabetes, heart disease, autoimmune disorders and asthma. As our understanding of the molecular mechanisms underlying the complex etiology of each of these diseases becomes more sophisticated, new opportunities for pharmacological intervention steadily emerge. Although investigations into the hormonal1 regulation of tumorigenesis have been extensive and enjoyed a degree of diagnostic and clinical success (especially for breast carcinoma) (1,2), parallel studies on the metastatic spread of malignant tumors have received much less attention, particularly at the molecular level. If more effective therapeutic strategies are to be developed against disseminated malignant disease, then new biochemical approaches are needed to identify novel pharmacological targets unique to metastatic tumor cells.

Keywords

Histamine Prostaglandin Tamoxifen Propranolol Verapamil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lippman, M.E. and Allegra, J.C. NEJM, 299: 930–933, 1978.PubMedCrossRefGoogle Scholar
  2. 2.
    Iacobelli, S., Lippman, M.E. and Robustelli Della Cuna, G. (Eds). The Role of Tamoxifen in Breast Cancer, Raven Press, NY., 1982.Google Scholar
  3. 3.
    Bindra, J.S. and Lednicer, D. (Eds.) Chronicles of Drug Discovery. Vol. 1. John Wiley and Sons, NY., 1982.Google Scholar
  4. 4.
    Gross, R. (Ed). Decision Making in Drug Research. Raven Press, NY., 1983.Google Scholar
  5. 5.
    Gilman, A.G., Goodman, L.S. and Gilman, A. (Eds). The Pharmacological Basis of Therapeutics (Sixth Edition). Macmillan Publishing Co., NY., pp 729–847, 1980.Google Scholar
  6. 6.
    Currie, M.G., Geller, D.M., Cole, B.R., Boyland, J.G., Sheng, W.V., Holmberg, S.W. and Needleman, P. Science, 221: 71–73, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Murphy, R.C., Hammarstrom, S. and Samuelsson, B. Proc. Natl. Acad. Sci. USA, 76: 4275–4279, 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Webb-Johnson, D.C. and Andrews, A.L., Jr. NEJM, 297: 476–482, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Weinberger, M. and Hendeles, L. NEJM, 308: 760–764, 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    Vargaftig, B.B. and Benveniste, J. Trends Pharmacol. 4: 341–344, 1983.CrossRefGoogle Scholar
  11. 11.
    Poste, G. and Fidler, I.J. Nature, 283: 139–146, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Kramer, R.H., Vogel, K.G. and Nicolson, G.L. J. Biol. Chem. 257: 2678–2686.Google Scholar
  13. 13.
    Rifkin, D.B., Moscatelli, D., Gross, J. and Jaffe, E. In: Cancer Invasion and Metastasis: Biological and Therapeutic Aspects (G.L. Nicolson and L. Milas, Eds). Raven Press, NY., pp 187–200, 1984.Google Scholar
  14. 14.
    Liotta, L.A., Thorgeirrson, U.P. and Garbisa, S. Cancer Met. Rev. 1: 277–288.Google Scholar
  15. 15.
    Kuttner, K.E., Hiti, J., Einstein, R. and Harper, E. Biochem. Biophys. Res. Comm., 72: 40–46.Google Scholar
  16. 16.
    Biswas, C. In: Tumor Invasion and Metastasis (Eds. L.A. Liotta and I.R. Hart), Martinus Nijhoff, The Hague, pp 405–425, 1982.CrossRefGoogle Scholar
  17. 17.
    Mainardi, C.L. Biochim. Biophys. Acta. 805: 137–142, 1984.PubMedCrossRefGoogle Scholar
  18. 18.
    Gasic, G.J., Gasic, T.B. and Steward, C.C. Proc. Natl. Acad. Sci. USA., 61: 46–52, 1968.PubMedCrossRefGoogle Scholar
  19. 19.
    Hara, Y., Steiner, M. and Baldini, M.G. Cancer Res., 40: 1217–1222, 1980.PubMedGoogle Scholar
  20. 20.
    Honn, K.V. Clin. Exp. Met., 1: 103–104, 1981.Google Scholar
  21. 21.
    Honn, K.V., Busse, W.D. and Sloane, B.F. Biochem. Pharm., 32: 1–11, 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    Hohn, K.V., Cicone, B. and Skoff, A. Science, 212: 1270–1272.Google Scholar
  23. 23.
    Henson, P.M. and Ginsberg, M.H. In: Platelets in Biology and Pathology., Vol. 2 (Ed. J.L. Gordon) Elsevier/North Holland, pp 265–308, 1981.Google Scholar
  24. 24.
    Miller, R, Bravo, R. and Burckhardt, J. Nature, 312: 716–720, 1984.CrossRefGoogle Scholar
  25. 25.
    Assosian, R.K., Komoriya, A., Meyers, C.A., Miller, D.M. and Sporn, M.D. J. Biol. Chem., 258: 7155–7160.Google Scholar
  26. 26.
    Nossel, H.L. and Vogel, H.J. (Eds). Pathology of the Endothelial Cell. Academic Press, NY., 1982.Google Scholar
  27. 27.
    Sporn, M.B. and Todaro, G.J. NEJM., 303: 878–880, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Sporn, M.B. and Roberts, A.B. Nature, 313: 745–747, 1985.PubMedCrossRefGoogle Scholar
  29. 29.
    Paget, S. Lancet, 1: 571–573, 1889.CrossRefGoogle Scholar
  30. 30.
    Kris, R.M., Libermnn, T.A., Avivi, A. and Schlessinger, J., Biotechnology, 2: 135–140.Google Scholar
  31. 31.
    Moyer, M.P. and Aust, J.B. Science, 224: 1445–1447, 1984.PubMedCrossRefGoogle Scholar
  32. 32.
    Hammond, S.L., Ham, R.G. and Stampfer, M.R. Proc. Natl. Acad. Sci. USA., 81: 5435–5439.Google Scholar
  33. 33.
    Fidler, I.J., Gruys, E., Cifone, M.A. and Barnes, Z. J. Nat. Cancer Inst., 67: 947–956, 1981.PubMedGoogle Scholar
  34. 34.
    Sharkey, F.E. and Fogh, J. Cancer Met. Rev., 3: 341–360, 1984.CrossRefGoogle Scholar
  35. 35.
    Meyvisch, C. Cancer Met. Rev., 2: 295–306, 1983.CrossRefGoogle Scholar
  36. 36.
    Kerbel, R.S., Man, M.S. and Dexter, D. J. Nat. Cancer Inst., 72: 93–108, 1984.PubMedGoogle Scholar
  37. 37.
    Sharkey, F.E. and Fogh, J. Int. J. Cancer, 24: 733–738.Google Scholar
  38. 38.
    Auerbach, R., Morrissey, L.W. and Sidky, Y.A. Cancer Res., 38: 1739–1744.Google Scholar
  39. 39.
    Keller, R. Inv. Metast., 1: 136–148, 1981.Google Scholar
  40. 40.
    Kyriazis, A.A. and Kyriaiis, A.P., Cancer Res., 40: 4509–4511, 1980.PubMedGoogle Scholar
  41. 41.
    Crooke, S.T., Mirabelli, C.K., Huang, C.H., Mong, S. and Wong, A. In: Development of Target-Oriented Anticancer Drugs, (Eds. Cheng et al) Raven Press, NY, 207–218, 1983.Google Scholar
  42. 42.
    Goyette, M., Petropopulos, C.J., Shank, P.R. and Fausto, N. Science, 219: 510–512, 1983.PubMedCrossRefGoogle Scholar
  43. 43.
    Kelly, K., Cochran, B.H., Stiles, C.D. and Leder, P. Cell, 35: 603–610, 1983.PubMedCrossRefGoogle Scholar
  44. 44.
    Thorgeirsson, U.P., Turpeenniemi-Hujanen, Y., Williams, J.E. Westin, E.H., Heilman, C.A., Talmadge, J.E. and Liotta, M.A. Molec. Cell. Biol., 5: 259–262, 1985.PubMedGoogle Scholar
  45. 45.
    Kerr, I.B., Finlay, G., Birnie, G.D. and McArdle, C.J. Brit. J. Cancer, 70: 686, 1983.Google Scholar
  46. 46.
    Greig, R.G., Koestler, T.P., Trainer, D.L., Corwin, S.P., Miles, L., Kline, T., Sweet, R., Yokoyama, S. and Poste, G. Proc. Natl. Sci. USA., In Press, 1985.Google Scholar
  47. 47.
    The Cancer Letter, March, pp 4–8, 1985.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • Russell G. Greig
    • 1
  1. 1.Department of Tumor BiologySmith Kline and French LaboratoriesPhiladelphiaUSA

Personalised recommendations