Advertisement

Some instrumental techniques for hostile environments

  • E. Duncombe

Abstract

The hostile environment referred to in the title of this paper is the environment within nuclear reactors. Both this and the final paper are therefore about instrumentation in the nuclear power industry.

Keywords

Lithium Niobate Ferritic Stainless Steel Liquid Sodium Nuclear Power Industry British Patent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argous J. P., Brunet M., Baron J., Lhuillier C. and Segut J. L. (1980) Immersed acoustical transducers and their potential use in LMFBR. 2nd Int. Conf on Liquid Metal Technology in Energy Production (Conf800401) (Richland, USA: Am. Nuc. Soc. ) pp. 423–9.Google Scholar
  2. Bentley P. G. (1980) Primary circuit flow measurement in the Dounreay PFR measurement in large LMFBR pipes. Proc. IAEA Specialists Meeting on Sodium Flow Measurements in Large LMFBR Pipes, Berglisch Gladbach, Germany ( Vienna: IAEA ) pp. 73–7.Google Scholar
  3. Bentley P. G. and Dawson D. G. (1966) Fluid flow measurement by transit time analysis of temperature fluctuation. Trans. Soc. Inst. Tech. 18, 183–93.Google Scholar
  4. Billeter T. R. (1972) Composite temperature—pressure measurement instrument for fast reactors. IEEE Trans. Nucl. Sci NS-19, 814–9.Google Scholar
  5. Brain T. J. S. and Scott R. W. W. (1982) Survey of pipeline flowmeters. J. Phys. E: Sci. Instrum. 15, 961–72.CrossRefGoogle Scholar
  6. Carroll R. M., Carr K. R. and Shepard R. L. (1982) Studies of sheathed thermocouples, construction and installation in thermowells to obtain faster response. Proc. Symp. Temperature: Its Measurements and Control in Science and Industry, Washington, USA, April 1982 (to be published).Google Scholar
  7. Catling E., Wallace F. G. and Ingersol A. (1966) In-pile creep measuring techniques. Proc. Int. Symp. In-pile Irradiation Equipment and Techniques, AERE, Harwell. Paper 0. 3.Google Scholar
  8. Crecraft D. I. (1983) Ultrasonic instrumentation: principles, methods and applications. J. Phys. E.: Sci. Instrum. 16, 181–9.CrossRefGoogle Scholar
  9. Dacey R., Davidson D. F., Leece J. and Harrison E. (1971) Sodium pump instrumentation. Nucl. Engng Int. 16 (177), 208–10.Google Scholar
  10. Davidson D. F. and Duncombe E. (1966) Some transducer techniques for use at elevated temperatures. Trans. Soc. Inst. Tech. 18, 51–9.Google Scholar
  11. Dean S. A. (1977) Unpublished work. Nuclear Power Development Laboratories, UKAEA Risley, Warrington.Google Scholar
  12. Dean S. A., Harrison E. and Stead A. (1970) Sodium flow monitoring. Nucl. Engng Int. 15 (174), 1003–7.Google Scholar
  13. Downe B., Fidler R., Noltingk B. E., Procter E., Williams J. A. and Phillips L. S. (1981) Performance and application of the CERL-Planer strain transducer. Proc. BSSM—SESA Int. Conf. Measurements in Hostile Environments. August 1981, pp. 15–20.Google Scholar
  14. Duncombe E. and Winstanley J. P. (1981) Temperature threshold detectors. UK Patent Application 8123184.Google Scholar
  15. Fossheim K. and Holt R. M. (1978) Broad band tuning of helical resonant cavities. J. Phys. E: Sci. Instrum. 11, 891–3.CrossRefGoogle Scholar
  16. Hans R. and Podgorski J. (1978) Development of magnetostrictive and piezoelectric high-temperature resistant sensors, a condition for reliable reactor diagnosis. Proc. IAEA Symp. Nuclear Power Plant Control and Instrumentation IAEA-SM-226/1 ( Vienna: IAEA ) pp. 421–37.Google Scholar
  17. Hoitink M. C., Horn J. E., Michaels T. E., Sheen E. M. and Yatable J. M. (1980) Under-sodium viewing development for FFTF. 2nd Int. Conf. on Liquid Metal Technology in Energy Production (Conf-800401-P1) (Richland, USA: Am. Nuc. Soc. ) pp. 437–43.Google Scholar
  18. Hughes G. (1972) Detection of rapid electrical fluctuations in high temperature liquid metals. J. Phys. E: Sci. Instrum. 5, 349–53.CrossRefGoogle Scholar
  19. Hugill A. L. (1982) Displacement transducers based on reactive sensors in transformer ratio bridge circuits. J. Phys. E: Sci. Instrum. 15, 597–606.CrossRefGoogle Scholar
  20. Humphreys P. and Caldwell-Nichols C. J. (1981) Unpublished work. Nuclear Power Development Laboratories, UKAEA Risley, Warrington.Google Scholar
  21. Hun A. L. and Weber T. (1979) Proc. Review Group Conference on Advanced Instrumentation for Reactor Safety. NUREG/CP-0007 ( Washington DC: US Nuc. Reg. Soc.).Google Scholar
  22. Irvine W. H. (1962) Extensiometer. British Patent 970170.Google Scholar
  23. Lehde H. and Lang W. T. (1948) US Patent 2435043.Google Scholar
  24. McCann J. D. (1975) Fast response temperature sensor for use in liquid sodium. AERE Report AERE R 7972.Google Scholar
  25. McKnight J. A. (1979) Improvement in or relating to the detection of bubbles in a liquid. British Patent 1556461.Google Scholar
  26. McKnight J. A. (1983) The use of ultrasonics for visualising components of the Prototype Fast Reactor whilst immersed in liquid sodium. Paper to be presented at the Ultrasonics Int. Conf Halifax, Canada, July 1983.Google Scholar
  27. McKnight J., Bishop J., Cartwright D. K. and Diggle W. R. (1980) The applications of ultrasonic technology under sodium. 2nd Int. Conf. on Liquid Metal Technology in Energy Production (Conf-800401) ( Richland USA: Am. Nuc. Soc. ) pp. 116–22.Google Scholar
  28. Massey L. M. (1977) High temperature capacitive transducer techniques. Proc. IEE Colloquium `Transducers for Use at High Temperature’ Digest No. 1977/58 ( London: IEE).Google Scholar
  29. Muller S. and Thun G. (1980) Performances of permanent magnet flowmeter probes for instrumentation of LMFBRS. Proc. 2nd Int. Conf. on Liquid Metal Technology in Energy Production (Conf-800401-P1) (Richland, USA: Am. Nuc. Soc. ) pp. 444–451.Google Scholar
  30. Petten J. C. R. (1975) Int. Colloquium on High Temperature In-pile Thermometry Petten, Netherlands (Eur. 5395).Google Scholar
  31. Pettinger D. S., Duncombe E. and Harrison E. (1968) Position indicating devices. British Patent 1101058.Google Scholar
  32. Pugh H. (1980) Capacitance strain gauge. Patent Application 12849 DR.Google Scholar
  33. Roach P. F. (1981) Sliding plate transducer. British Patent Application 8130428.Google Scholar
  34. Roach P. F. and Dacey R. (1981) Liquid level measuring instruments. British Patent Application GB 2061517A.Google Scholar
  35. Sharp W. N. Jr (1975) Strain gauges for longterm high temperature strain measurements. Proc. Soc. Exptl Stress Anal. (USA) 32, 482–8.Google Scholar
  36. Strong J. T. and Procter E. (1981) Strain measuring systems and protections for adverse environments. Proc. BSSM–SESA Inst. Conf. Measurements in Hostile Environments, Edinburgh, August 1981 (to be published).Google Scholar
  37. Sydenham P. H. (1980) Transducers in Measurement and Control ( Bristol: Hilger).Google Scholar
  38. Tasman H. A., Schmidt H. E., Richter J., Campana M. and Fayl G. (1977) The Treson Experiments: Measurement of temperature profiles in nuclear fuels by means of ultrasonic thermometers. High Temp. –High Pressures 9, 387–406.Google Scholar
  39. Thatcher G. (1974) Electromagnetic Flowmeters for Liquid Metals, Modern Methods of Flow Measurement ( Stevenage: Peter Peregrinus ) pp. 359–90.Google Scholar
  40. Thatcher G., Bentley P. G., McGonigal G. (1970) Sodium flow measurement in PFR. Nucl. Engng Int. 15 (173), 822–5.Google Scholar
  41. Thatcher G., Dean S. A. and Roach P. F. (1976) Flux distortion flowmeter development. Proc. IAEA Specialists Meeting on the In-core and Primary Circuit Instrumentation of LMFB Reactors, Warrington, England ( Vienna: IAEA ) pp. 307–32.Google Scholar
  42. Thomson A., Cladwell-Nichols C. J. and Roach P. F. (1982) Inclinometer for fast reactors. European Patent Application 92303010. 1.Google Scholar
  43. Thomson A. and Evans R. A. (1978) High integrity thermocouples for in-pile applications. Proc. IAEA Symp. Nuclear Power Plant Control and Instrumentation. IAEA-SM226/109 ( Vienna: IAEA ) pp. 401–19.Google Scholar
  44. Uno O., Araki H., Horikoshi S., Ozaki Y. and Oda M. (1980) Research and development of the ultrasonic flowmeter for LMFBR. Proc. IAEA Specialists Meeting on Sodium Flow Measurements in Large LMFBR Pipes Berglisch Gladbach, Germany ( Vienna: IAEA ) pp. 95–104.Google Scholar
  45. Walton H. (1977a) Transducers for nuclear reactor measurements. Proc. IEE Colloquium `Transducers for Use at High Temperatures’ Digest No. 1977/58 ( London: IEE).Google Scholar
  46. Walton H. (1977b) Capacitance transducers in severe environments. Proc. `Transducer 1977’ Conf.Google Scholar
  47. Watkins R. D., Deighton M. O., Gillespie A. B. and Pike R. B. (1982) A proposed method for generating and receiving narrow beams of ultrasound in the fast reactor liquid sodium environment. AERE Report AERE-R-9965.Google Scholar
  48. Wiegand D. E. (1972) The magnetometer flow sensor. Argonne Nuclear Laboratory Report ANL-7874.Google Scholar
  49. Yancey M. E. and Kelsey P. V. (1980) Irradiation effects upon selected ceramic cement and ceramic insulated wires for radiation resistant transducers. NUREG/CR/1335 ( Washington DC: US Nuc. Reg. Soc.).Google Scholar

Copyright information

© Chapman & Hall 1990

Authors and Affiliations

  • E. Duncombe

There are no affiliations available

Personalised recommendations