Skip to main content

Filtering Due to the Inner Hair-Cell Membrane Properties and its Relation to the Phase-Locking Limit in Cochlear Nerve Fibres

  • Chapter
Auditory Frequency Selectivity

Part of the book series: Nato ASI Series ((NSSA,volume 119))

Abstract

Because action potentials are elicited by unidirectional movements of the basilar membrane (Davis et al., 1950), discharges “phase-lock”, that is, they occur within a well defined time window relative to a single cycle of a sinusoid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. J. (1973)- Quantitative model for the effects of stimulus frequency upon synchronization of auditory discharges, J. Acoust. Soc. Am., 54-, 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Davis, H., Fernandez, C. and McAuliffe, D.R. (1950). The excitatory process process in the cochlea, Proc. Natl. Acad. Sci., 30, 580–587.

    Article  Google Scholar 

  • Eggermont, J. J. (1983). Comment to Narins & Hillary, (1983). in: Hearing- Physiological Bases and Psychophysics, R. Klinke and R. Hartmann, eds., Springer, Heidelberg.

    Google Scholar 

  • Evans, E. F. (1972). The frequency response and other properties of single fibres in the guinea-pig cochlear nerve, J. Physiol., 226, 263–287.

    PubMed  CAS  Google Scholar 

  • Flock, A. and Russell, I. J. (1976). Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line organ of the Burbot, Lota lota, J. Physiol., 257, 45–62.

    PubMed  CAS  Google Scholar 

  • Furukawa, T. and Ishii, Y. (1967). Neurophysiological studies of hearing in the goldfish, J. Neurophysiol., 30, 1377–1403.

    PubMed  CAS  Google Scholar 

  • Gummer, A. W., Smolder, J. W. T. and Klinke, R. (1984). Mechanical vibration in the pigeon ear. Pflugers Arch. Suppl. 400, R35.

    Google Scholar 

  • Harrison, R. V. and Evans, E. F. (1979). Some aspects of temporal coding by single cochlear fibres from regions of cochlear hair cell degeneration in the guinea-pig, Arch. Otorhinolaryngol., 224, 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Hillery, C. M. and Narins, P. M. (1984). Neurophysiological evidence for a travelling wave in the amphibian inner ear, Science, 255, 1037–1039.

    Article  Google Scholar 

  • Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones, J. Acoust. Soc. Am., 68, 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Khanna, S. M. and Leonard, D. G. B. (1982). Basilar membrane tuning in the cat cochlea, Science, 215, 305–306.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A. R., Winter, I. M. and Darwin, C. J. (1986). The representation of steady-state vowels in the temporal discharge patterns of guinea-pig cochlear nerve and primarylike cochlear nucleus neurones, J. Acoust. Soc. Amer., 79, 100–113.

    Article  CAS  Google Scholar 

  • Pfeiffer, R. R. and Molnar, C. E. (1970). Cochlear nerve fiber discharge patterns: relationship to the cochlear microphonic, Science, 167, 1614–1616.

    Article  PubMed  CAS  Google Scholar 

  • Rhode, W. S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J. Acoust. Soc. Amer., 49, 1218–1231.

    Article  Google Scholar 

  • Rose, J. E., Brugge, J. F., Anderson, D. J. and Hind, J. E. (1967). Phase locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey, J. Neurophysiol., 30, 769–793.

    PubMed  CAS  Google Scholar 

  • Russell, I. J. and Sellick, P. M. (1983). Low—frequency characteristics of intracellularly recorded receptor potentials in the guinea-pig cochlear hair cells, J. Physiol., 338, 179–206.

    PubMed  CAS  Google Scholar 

  • Sachs, M. B., Woolf, N. K. and Sinnot, J. M. (1980). Response properties of neurons in the avian auditory system: comparison with mammalian homologues and consideration of the neural encoding of complex stimuli, in: Comparative Studies of Hearing in Vertebrates, A. N. Popper and R. R. Fay, ed., Springer, Heidelberg.

    Google Scholar 

  • Sellick, P. M., Patuzzi, R. and Johnstone, B. M. (1982). Measurements of basilar membrane motion in the guinea-pig using Mossbauer technique, J. Acoust. Soc. Amer., 72, 131–141.

    Article  CAS  Google Scholar 

  • Smolders, J. W. T. and Klinke, R. (1985). Synchronized responses of primary and auditory fibre populations in Caiman crocodilus ( L.) to single tones and clicks, Hearing Res., (in the press. )

    Google Scholar 

  • Sullivan, W. E. and Konishi, M. (1984). Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl, J. Neurosci., 4, 1781–1786.

    Google Scholar 

  • Wilson, J. P., Smolders, J. W. T. and Klinke, R. (1985). Mechanics of the basilar membrane in Caiman crocodilus, Hearing Res. (in the press.)

    Google Scholar 

  • Woolf, N. K., Ryan, A. F. and Bone, R. C. (1981). Neural phase-locking properties in the absence of cochlear outer hair cells, Hearing Res., 4, 335–346.

    Article  CAS  Google Scholar 

  • Siegel, J.H. (1986). Analysis of synaptic potentials in the mammalian organ of Corti, Assoc, Res. Otolaryngol. Abstr., 9, 66.

    Google Scholar 

  • Siegel, J.H., Dallos, P. and Oesterle, E.C. (1986). Spike activity in mammalian organ of Corti, Assoc. Res. Otolaryngol. Abstr., 8, 4-9-$0.

    Google Scholar 

  • Siegel, J.H. and Dallos, P. (1986). Spike activity recorded from the organ of Corti, in: Nobel Symposium 63, Cellular Mechanisms in Hearing, Hearing Res., (in the press).

    Google Scholar 

  • Hillery, C.M. and Narins, P.M. (1986). Frequency and time domain comparison of low-frequency auditory fiber responses in two anuran amphibians, Hearing Res., (in the press).

    Google Scholar 

  • Lewis, E.R. (1981). Suggested evolution of tonotopic organization in the frog amphibian papilla, Neurosci. Letters, 21, 131–136.

    Google Scholar 

  • Narins, P.M. and Hillery, C.M. (1983). Frequency coding in the inner ear of anuran amphibians, in: Hearing - Physiological Bases and Psycho- Physics, R. Klinke and R. Hartmann, eds., Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Russell, I., Palmer, A. (1986). Filtering Due to the Inner Hair-Cell Membrane Properties and its Relation to the Phase-Locking Limit in Cochlear Nerve Fibres. In: Moore, B.C.J., Patterson, R.D. (eds) Auditory Frequency Selectivity. Nato ASI Series, vol 119. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2247-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2247-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9316-3

  • Online ISBN: 978-1-4613-2247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics