Skip to main content

Basilar Membrane Tuning in the Pigeon Ear

  • Chapter
Auditory Frequency Selectivity

Part of the book series: Nato ASI Series ((NSSA,volume 119))

  • 185 Accesses

Abstract

The auditory frequency selectivity observed in primary fibre responses and in hair cell receptor potentials relies on the mechanical deformation of the hair cell cilia. This deformation involves different auxiliary structures in different classes of tetrapod vertebrates and it is not known what mechanism causes the sharpness of the observed frequency tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashmore, J.F. and Pitchford, S. (1985). Evidence for electrical resonant tuning in hair cells of the frog amphibian papilla, J. Physiol., 364, 39 P.

    Google Scholar 

  • Bekesy, G. von (1944). Über die mechanische Frequenzanalyse in der Schnecke verschiedener Tiere, Akust. Zeitschrift, 9, 3–11.

    Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1980). The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle, J. Physiol., 306, 79–125.

    PubMed  CAS  Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1981). An electrical tuning mechanism in turtle cochlear hair cells, J. Physiol. 312, 377–412.

    PubMed  CAS  Google Scholar 

  • Gummer, A.W. and Klinke, R. (1983). Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus, Hearing Res., 12, 367–380.

    Article  CAS  Google Scholar 

  • Hillery, C.M. and Narins, P.M. (1984). Neurophysiological evidence for a traveling wave in the amphibian inner ear, Science, 225, 1037–1039.

    Article  PubMed  CAS  Google Scholar 

  • Holton, T. and Weiss, T.F. (1983). Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones, J. Physiol. 345, 205–240.

    PubMed  CAS  Google Scholar 

  • Khanna, S.M. and Leonard, D.G.B. (1982). Basilar membrane tuning in the cat cochlea, Science, 215, 305–306.

    Article  PubMed  CAS  Google Scholar 

  • Peake, W.T. and Ling, A. (1980). Basilar-membrane motion in the alligator lizard: Its relation to tonotopic organization and frequency selectivity, J. Acoust. Soc. Am., 67, 1736–1745.

    Article  PubMed  CAS  Google Scholar 

  • Robles, L., Ruggero, M.A. and Rich, N.C. (1985). Mossbauer measurements of the mechanical response to single-tone and two-tone stimuli at the base of the chinchilla cochlea, in: Peripheral Auditory Mechanisms, J.B. Allen, J.L. Hall, A.Hubbard, S.T. Neely and A. Tubis, eds., Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Ryals, B.M. and Rubel, E.W. (1982). Patterns of hair cell loss in chick basilar papilla after intense auditory stimulation. Frequency organization, Acta Otolaryngol., 93, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, M.B., Young, E.D. and Lewis, R.H. (1974). Discharge patterns of single fibres in the pigeon auditory nerve, Brain Res. 70, 431–447.

    Article  PubMed  CAS  Google Scholar 

  • Schermuly, L. and Klinke, R. (1985). Change of characteristic frequency of pigeon primary auditory afferents with temperature, J. Comp. Physiol. A, 156, 209–211.

    Article  Google Scholar 

  • Sellick, P.M., Patuzzi, R. and Johnstone, B.M. (1982). Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique, J. Acoust. Soc. Am., 72, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Smolders, J.W.T. and Klinke, R. (1984). Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus (L.), J. Comp. Physiol. A, 155, 19–30.

    Article  Google Scholar 

  • Wilson, J.P. and Johnstone, J.R. (1975). Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe, J. Acoust. Soc. Am., 57, 705–723.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J.P., Smolders, J.W.T. and Klinke, R. (1985). Mechanics of the basilar membrane in Caiman crocodilus, Hearing Res., 18, 1–14,

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Smolders, J.W.T., Gummer, A.W., Klinke, R. (1986). Basilar Membrane Tuning in the Pigeon Ear. In: Moore, B.C.J., Patterson, R.D. (eds) Auditory Frequency Selectivity. Nato ASI Series, vol 119. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2247-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2247-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9316-3

  • Online ISBN: 978-1-4613-2247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics