Skip to main content

Outer Hair Cell Motility and Cochlear Frequency Selectivity

  • Chapter
Auditory Frequency Selectivity

Part of the book series: Nato ASI Series ((NSSA,volume 119))

Abstract

There is mounting evidence that the physiologically vulnerable sensitivity and frequency selectivity of cochlear partition movement (Khanna and Leonard, 1982; Sellick et al., 1982) results from outer hair cell (OHC) bidirectional transduction. These sensory receptors appear not only capable of converting acoustic energy into neural energy (mechano- electrical transduction) but possess effector abilities as well (electromechanical transduction). The first experimental evidence for cochlear bidirectional transduction came from Kemp’s (1978) observation that acoustic energy of cochlear origin can be measured in the external ear canal. Crossed olivo-cochlear bundle (COCB) stimulation has been shown to modulate the magnitude of Kemp’s ota-acoustic emissions (Mountain, 1980; Siegel and Kim, 1982) and to change inner hair cell receptor potentials but not their membrane impedance (Brown and Nutall, 1984). Both types of COCB experiment provide indirect evidence for OHC involvement in the generation of mechanical energy. Recent demonstrations of a motile response of OHC to electrical (Brownell, 1984; Brownell et al., 1985, 1986; Ashmore and Brownell, 1986; Kachar et al, 1986; Evans et al., 1986) and chemical stimuli (Goldstein and Mizukoshi, 1967; Brownell, 1984; Brownell et al., 1985; Flock et al., 1985; Zenner, et al., 1986; Evans et al., 1986) provide direct evidence for electro- and chemo-mechanical transduction by OHCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashmore, J. F. and Brownell, W. E. (1986). Kilohertz movements induced by electrical stimulation in outer hair cells isolated from the guinea- pig cochlea, J. Physiol. 376, 49 P.

    Google Scholar 

  • Brown, M. C. and Nuttall, A. L. (1984). Efferent control of cochlear inner hair cell responses in the guinea pig, J. Physiol., 354, 625–646.

    PubMed  CAS  Google Scholar 

  • Brownell, W. E. (1982). Cochlear transduction: an integrative model and review, Hearing Res., 6, 335–360.

    Article  CAS  Google Scholar 

  • Brownell, W. E. (1984). Microscopic observation of cochlear hair cell motility, Scan. Elect. Microscopy, 1984/III, 1401–1406.

    Google Scholar 

  • Brownell, W. E., Bader, C. R., Bertrand, D. and de Ribaupierre, Y. (1985). Evoked Mechanical Responses of Isolated Cochlear Outer Hair Cells, Science, 227, 194–196.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, W. E. and Kachar, B. (1986). Outer hair cell motility: A possible electro-kinetic mechani sm, in: Peripheral Auditory Mechanisms, J. B. Allen, J. L. Hall, A. E. Hubbard, S. T. Neely and A. Tubis, eds., Springer-Verlag, New York, N.Y..

    Google Scholar 

  • Brownell, W. E., Zidanic, M. and Spirou, G. A. (1986). Standing currents and their modulation in the cochl ea, in: Neurobiology of Hearing: The Cochlea, R. A. Altschuler, D. Hoffman and R. Bobbin, eds., Raven Press, New York, N.Y.

    Google Scholar 

  • Crawford, A. C. and Fettiplace, R. (1985). The mechanical properties of ciliary bundles of turtle cochlear hair cells, J. Physiol., 364, 359– 379.

    PubMed  CAS  Google Scholar 

  • Davis, H. (1983). An active process in cochlear mechanics, Hearing Res., 9, 79–90.

    Article  CAS  Google Scholar 

  • Douek, E. E., Dodson, H. C. and Bannister, L. H. (1983). The effects of sodium salicylate on the cochlea of guinea pigs, J. Laryngol. Otol., 93, 793–799.

    Google Scholar 

  • Evans, B. N., Warner, R. and Yonovitz, A. (1986). Measurements of in vitro outer hair cell motility in the mammalian cochlea, J. Acoust. Soc. Am., 79, S49.

    Article  Google Scholar 

  • Flock, A. (1983). Hair cells, receptors with a motor capacity?, in: Hearing Physiological Bases and Psychophysics, R. Klinke and R. Hartmann, eds., Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Flock, A., Ulfendahl, M. and Flock, B. (1985). Motility in outer hair cells and its structural substrate, Absts. of Midwinter Meet, of Assoc. for Res. in Otolaryngol., 8, 175–176.

    Google Scholar 

  • Geisler, C. D. (1986). A model of cochlear function with motile outer hair cells, Hearing Res., in the press.

    Google Scholar 

  • Gold, T . (1948). Hearing. II. The physical basis of the action of the cochlea, Proc. Roy. Soc. Lond. B. 135, 492–498.

    Article  Google Scholar 

  • Goldstein, A. J. and Mizukoshi, O. (1967). Separation of the organ of Corti into its component cells. Ann. Otol. Rhinol. Laryngol., 76 414–426.

    PubMed  CAS  Google Scholar 

  • Haydon, D. A . (1964). The electrical double layer and electrokinetic phenomena, Recent Prog. Surf. Sci. 1, 94–158.

    CAS  Google Scholar 

  • Kachar, B., Brownell, W. E., Altschuler, R. and Fex, J. (1986). Electro- kinetic shape changes of cochlear outer hair cells, Nature, in the press.

    Google Scholar 

  • Kemp, D. T . (1978). Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am. 65, 1386–1391.

    Article  Google Scholar 

  • Khanna S. M. and Leonard, D. G. B. (1982). Basilar membrane tuning in the cat cochlea, Science, 190, 1218–1221.

    Google Scholar 

  • McFadden, D. and Plattsmier, H. S. (1984). Aspirin abolishes spontaneous oto-acoustic emissions, J. Acoust. Soc. Am., 76, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S. and Mathias, R. T. (1985). Electro-osmosis and the reabsorption of fluid in renal proximal tubules, J. Gen. Phsyiol., 85, 699–728.

    Article  CAS  Google Scholar 

  • Morrison, F. A. and Osterle, J. F. (1965). Electrokinetic energy conversion in ultrafine capillaries, J. Chem. Physics, 43, 2111–2115.

    Article  CAS  Google Scholar 

  • Mountain, D. C. (1980). Changes of endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics, Science, 210, 71–72.

    Article  PubMed  CAS  Google Scholar 

  • Nee, T. W. (1975). Theory of the electroosmosis effect in electrophoresis, J. Chromatography, 105, 231–249.

    Article  CAS  Google Scholar 

  • Neely, S. T . (1985). Mathematical modeling of cochlear mechanics, J. Acoust. Soc. Am., 78, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Neely, S. T., (1983). The cochlear amplifier, in: The Mechanics of Hearing, E. de Boer and M. A. Viergever, eds., Martinus Nijhoff, Delft.

    Google Scholar 

  • Saito, K. (1983). Fine structure of the sensory epithelium of guinea-pig organ of Corti: Subsurface cisternae and lamellar bodies in the outer hair cells, Cell and Tissue Res., 229, 467–481.

    Article  CAS  Google Scholar 

  • Sellick, P. M., Patuzzi, R. and Johnstone, B. M. (1982). Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique, J. Acoust. Soc. Am., 72, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, J. H. and Brownell, W. E. (1986). Synaptic and golgi membrane recycling in cochlear hair cells, J. Neurocytol., 15, 311–328.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, J. H. and Kim, D. O. (1982). Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects biomechanical nonlinearity, Hearing Res., 6, 171–182.

    Article  CAS  Google Scholar 

  • Teorell, T. (1959). Electrokinetic membrane processes in relation to properties of excitable tissues: I. Experiments on oscillatory transport phenomena in artificial membranes, J. Gen. Physiol., 42, 831–845.

    Article  PubMed  CAS  Google Scholar 

  • Zenner, H. P. (1986). Structure of hair cells, in: Neurobiology of Hearing: The Cochlea, R. A. Altschuler, D. Hoffman and R. Bobbin, eds., Raven Press, New York, N.Y.

    Google Scholar 

  • Zenner, H. P., Zimmermann, U. and Schmitt, U. (1985). Reversible contraction of isolated mammalian cochlear hair cells, Hearing Res. 18, 127–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Brownell, W.E. (1986). Outer Hair Cell Motility and Cochlear Frequency Selectivity. In: Moore, B.C.J., Patterson, R.D. (eds) Auditory Frequency Selectivity. Nato ASI Series, vol 119. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2247-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2247-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9316-3

  • Online ISBN: 978-1-4613-2247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics