The Expression of Genes Injected into Oocytes and Eggs of Xenopus Laevis

  • J. G. Williams
  • M. M. Bendig
  • P. J. Mason
  • J. A. Elkington


The Xenopus laevis β1-globin gene was injected into oocytes and unfertilized eggs of X.laevis. In oocytes the injected globin gene was actively transcribed but the majority of the transcripts were incorrectly initiated. Processing of Xenopus globin RNA in oocytes was analyzed using a fusion gene containing the promoter of the Herpes Thymidine Kinase gene and the coding and 3’ non-coding sequences from the β1 globin gene. The transcripts were spliced and polyadenylated at the correct sites with a very high efficiency. In unfertilized eggs the injected gl globin gene was transcribed at a low level but only from the correct start sites. In oocytes the injected circular plasmid DNA containing the cloned globin genes persisted but did not replicate. In contrast, DNA injected into unfertilized eggs replicated up to 15-fold within a 22hr period. Naked DNA injected into either oocytes or eggs is assembled into a chromatin-like structure. The ability of the egg to selectively transcribe the injected Xenopus globin gene from the correct promoter sites may be related to differences in chromatin structure between the oocyte and the unfertilized egg.


Xenopus Laevis Xenopus Oocyte Globin Gene Herpes Simplex Virus Thymidine Kinase Correct Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Gurdon, “Control of Gene Expression in Animal Development,” Clarendon, Oxford (1974).Google Scholar
  2. 2.
    C.C. Ford and H.R. Woodland, Dev. Biol. 48: 189 (1975).CrossRefGoogle Scholar
  3. 3.
    J.B. Gurdon, M.L. Birnstiel and V.A. Speight, Biochim. Biophys. Acta 174: 614 (1969).PubMedGoogle Scholar
  4. 4.
    R.A. Laskey and J.B. Gurdon, Eur. J. Biochem. 37: 467 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    R.M. Harland and R.A. Laskey, Cell 21: 761 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    J.E. Mertz and J.B. Gurdon, Proc. Natl. Acad. Sei. U.S.A. 74: 1502 (1977).CrossRefGoogle Scholar
  7. 7.
    D. Rungger, P.D. Mathias and J.P. Huber, Transcription of complex structural genes in the Xenopus oocyte system, in: “International Cell Biology 1980-1981, ” H.G. Schweiger, ed., Springer Verlag, Berlin (1981).Google Scholar
  8. 8.
    M.P. Wickens, S. Woo, B.W. O’Malley and J.B. Gurdon, Nature (London) 285: 628 (1980).Google Scholar
  9. 9.
    J.B. Gurdon and D.A. Melton, Ann. Dev. Genet. 16: 189 (1981).CrossRefGoogle Scholar
  10. 10.
    M.M. Bendig and J.G. Williams, Proc. Natl. Acad. Sci. U.S.A. 80: 6197 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    M.M. Bendig and J.G. Williams, Mol. Cell Biol. 4: 567 (1984).PubMedGoogle Scholar
  12. 12.
    A.H. Wyllie, R.A. Laskey, J. Finch and J.B. Gurdon, Dev. Biol. 64: 178 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    R.A. Laskey, B.M. Honda, A.D. Mills, M.R. Morris, A.H. Wyllie, J.E. Hertz, E.M. DeRobertis and J.B. Gurdon, Cold Spring Harbor Symp. Quant. Biol. 42: 171 (1978).PubMedGoogle Scholar
  14. 14.
    R.K. Patient, R. Harris, M.E. Walmsley and J.G. Williams, J. Biol. Chem. 258: 8521 (1983).PubMedGoogle Scholar
  15. 15.
    S.L. McKnight, E.R. Gavis and R. Kingsbury, Cell 25: 385 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    L.D. Etkin and R.E. Maxson Dev. Biol. 75: 13 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    S.L. McKnight and E.R. Gavis, Nucleic Acids Res. 24: 5931 (1980).CrossRefGoogle Scholar
  18. 18.
    J. Messing, New M13 vectors for cloning, in: Methods in Enzymology, Vol 101, R. Wu, L. Grossman and K. Moldave eds., Academic Press, New York (1983).Google Scholar
  19. 19.
    R.M. Kay, R. Harris, R.K. Patient and J.G. Williams, Nucleic Acids Res. 8: 2691 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    J.G. Williams, R.M. Kay and R.K. Patient, Nucleic Acids Res 8: 4247 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Bendig, Nature (London) 292: 65 (1981).CrossRefGoogle Scholar
  22. 22.
    S. Rusconi and W. Schaffner, Proc. Natl. Acad. Sci. U.S.A. 78: 5051 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Igo-Kemenes, W. Horz and H.G. Zachau, Chromatin Ann. Rev. Biochem. 51: 89 (1982).Google Scholar
  24. 24.
    G. Garguilo, W. Wasserman and A. Worcel, Cold Spring Harobor Symp. Quant. Biol. 47: 549 (1983).Google Scholar
  25. 25.
    M. Ryoji and A. Worcel, Cell 37: 21 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    M.P. Wickens and J.B. Gurdon, J. Mol. Biol. 163: 1 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    J.P. Ford and M.-T. Hsu, J. Virol. 28: 795 (1978).PubMedGoogle Scholar
  28. 28.
    J.R. Nevins, J.-M. Blanchard and J.E. Darnell, Jr, J. Mol. Biol. 144:377 (1980)PubMedCrossRefGoogle Scholar
  29. 29.
    E. Hofer, R. Hofer-Warkinek and J.E. Darnell, Jr, Cell 29:887 (1982)PubMedCrossRefGoogle Scholar
  30. 30.
    R.K. Patient, J.A. Elkington, R.M. Kay and J.G. Williams, Cell 21: 565 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    A.J. Twigg and D. Sherratt, Nature (London) 283: 216 (1980).Google Scholar
  32. 32.
    S.J. Busby and R.H. Reeder, Dev. Biol. 91: 458 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Kressmann and M.L. Birnstiel, Surrogate genetics in the frog oocyte, in: “Transfer of Cell Constituents into Eukaryotic Cells,” J.E. Cells, A. Grassman and A. Loyter, eds., Plenum Press, New York (1980).Google Scholar
  34. 34.
    A.J. Berk and P.A. Sharp, Cell 12: 721 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    R.F. Weaver and C. Weissman, Nucleic Acids Res. 7: 1175 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. G. Williams
    • 1
  • M. M. Bendig
    • 1
  • P. J. Mason
    • 1
  • J. A. Elkington
    • 1
  1. 1.The Imperial Cancer Research FundLondon NW7UK

Personalised recommendations