A Computer Vision Model for The Analysis of Classes of Hand-Written Plane Curves

  • S. Impedovo
  • M. Castellano


The objective of this paper is to research the properties that allow the characterization of classes of hand-written plane curves. To this purpose the change in shape among plane curves which belong to the same class is considered as a dynamic phenomenon where shape deformation is assumed as arising from a motion consistent with the perception of the human visual system. A preliminary investigation to select the physical laws these deformations are linked to is developed by using the velocity fields, obtained through the well known computer vision motion-techniques.


Velocity Field Optical Flow Digital Signal Processing Human Visual System Plane Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Impedovo et al.; “A Fourier Descriptor Set for Non-stylized Numerals.” IEEE Transaction on System Man and Cybernetics, Vol. SMC-8, Aug. 1978, pp. 640–645.Google Scholar
  2. [2]
    S. Impedovo; “Power Pattern Resolution in Human Vision”, Proc. SPIE 85, Application of Artificial Intelligence II,Vol. 548, pp. 263–268.Google Scholar
  3. [3]
    L.R. Rabiner,B. Gold; “Theory and Application of Digital Signal Processing.”,Prentice Hall Inc. Englewood Cliffs, N.J. 1975.Google Scholar
  4. [4]
    V. Cappellini, A.G. Constantinides, P. Emiliani; “Digital Filters and their Applications.” Academic Press 1978 London.Google Scholar
  5. [5]
    A.V. Oppenheim and R.W. Schafer; “Digital Signal Processing”, Prentice-Hall Inc.,Englewood Cliffs, N.J. 1975.MATHGoogle Scholar
  6. [6]
    A.E. Taylor; “Introduction to Functional Analysis”, John-Wiley and Sons inc., London.Google Scholar
  7. [7]
    L. Schwartz; “Analyse-Deuxième Partie. Topologie Generale et Analyse Fonctionnelle” Hermann 1970 Paris.Google Scholar
  8. [8]
    G. Granlund; “ Fourier Preprocessing for Hand-Printed Character Recognition. ”, IEEE Trans. Comp., Vol. C.21–3, pp. 195–201, Feb. 1972.Google Scholar
  9. [9]
    E. Person and K.S. Fu; “Shape Discrimination Using Fourier Descriptors.”, IEEE Trans. Syst., Man, Cybern.,Vol. SMC-7,n. 3 pp. 170–179, Mar. 1977.CrossRefGoogle Scholar
  10. [10]
    S. Impedovo et al.; “Interactive System for Hand-Written Numerals Classification Based on Fourier Descriptors”. Proc. of the International Conference on “Image Analysis and Processing ”. PAVIA 22–24 Oct. 1980 pp. 135–139.Google Scholar
  11. [11]
    S.K. Parui, D. Dutta Majumder; “A New Definition of Shape Similarity.” Pattern Recognition Letters, Vol. 1, n. 1, pp. 37–42 1982.MATHCrossRefGoogle Scholar
  12. [12]
    S.K. Parui, D. Dutta Majumder; “Some Similarity Measures for Open Curves.”Pattern Recognition Letters,Vol.1,n. 3, pp. 129–134 1983.MATHCrossRefGoogle Scholar
  13. [13]
    J. Sklansky; “Pattern Recognition.Introduction and Foundations” Dowden, Hatchinson and Ross Inc. 1973, John Wiley and Sons inc.-London.Google Scholar
  14. [14]
    H. Wallach; “On Preceived Identity:1. the direction of motion of straight lines.” In On perception (ed. H.Wallach).New York: Quadrangle 1976.Google Scholar
  15. [15]
    C.I. Fennema,W.B. Thompson; “Velocity Determination in Scenes Containing Several Moving Objects.” Comp. Graph, and Image Processing 9, 1979, pp. 301–315.CrossRefGoogle Scholar
  16. [16]
    D. Marr, S. Ullman; “Directional Selectivity and Its Use in Early Visual Processing.”, Proc. R. Soc.Lond.B 211, 1981, pp. 151–180CrossRefGoogle Scholar
  17. [17]
    E.H. Adelson, & J.A. Movshon; “Phenomenal Coherence of Moving Visual Patterns.” Nature, Lond. 300, 1982, pp. 523–525.CrossRefGoogle Scholar
  18. [18]
    T. Poggio; “Visual Algorithms.” In Physical and Biological Processing of Images, (ed. O.J. Braddick & A.C. Sleigh) Berlin: Springer-Verlag, 1983.Google Scholar
  19. [19]
    A.L. Yuille; “The Smoothest Velocity Field and Taken Matching Schemes.”, M.I.T. Artif.Intell.Lab.Memo 724, 1983.Google Scholar
  20. [20]
    E.C. Hildreth;“The Computation of the Velocity Field” Proc. R. Soc. Lond. B 221, 1984, pp. 189–220.CrossRefGoogle Scholar
  21. [21]
    H.H.Nagel; “Recent Advances in Image Sequence Analysis” Premier Colloque Image — Traitment, Synthèse, Technologie et Application; Biarritz-Mai 1984.Google Scholar
  22. [22]
    R.K.P. Horn and B.G. Schunck; “Determining Optical Flow”, Artificial Intelligence 17, 1981, pp. 185–203.CrossRefGoogle Scholar
  23. [23]
    J.M. Prager, M.A. Arbib; “Computing the Optical Flow: The Match Algorithm and Prediction”, Computer Vision, Graphics and Image Processing n. 24, 1983, pp. 271–304.CrossRefGoogle Scholar
  24. [24]
    S. Impedovo; “Plane Curve Classification Through Fourier Descriptors. An Application to Arabic Hand-Written Numeral Recognition”, IEEE Computer Society Press. Proc. of the 7-th Int. Conf. on PATTER RECOGNITION Vol. 2, Aug.1984, pp. 1069–1072.Google Scholar
  25. [25]
    S. Impedovo et al.; “Surface Detection Algorithm in Three- Dimensional Complex-Space.” Cybernetic System:Recognition, Learning, Self-Organization. Edit by E.R. Caianello and G. Musso.Research Studies Press LTD.J.W. and S.Inc. 1984, pp 157–168.Google Scholar
  26. [26]
    A.N. Kolmogorov and S.V. Fomin; “Elementy Teorìì Funktsij i Funktsional’ Nogo Analiza”, Copyright by Nauka, Moskov U.R.S.S. Cap. VII Sec.1.Google Scholar
  27. [27]
    W. Rudin; “Functional Analysis”,New York: McGraw-Hill,1973Google Scholar
  28. [28]
    E.C. Hildreth; “The Measurement of Visual Motion”,A.C.M. distinguished dissertation series, Cambridge, Massachusetts M.I.T. Press.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. Impedovo
    • 1
  • M. Castellano
    • 2
  1. 1.Istituto di Scienze dell’InformazioneUniversità degli Studi di BariBariItaly
  2. 2.Istituto Nazionale di Fisica NucleareBariItaly

Personalised recommendations