Advertisement

The Mammalian Vomeronasal System: Its Role in Learning and Social Behaviors

  • Charles J. Wysocki
  • N. Jay Bean
  • Gary K. Beauchamp

Abstract

Over the past several years, we have conducted behavioral work with mice and guinea pigs to define the functions of the mammalian vomeronasal system. This chapter will review the status of some of our ongoing research by summarizing the results of experiments designed to determine the role of the vomeronasal system in chemosensory investigation of female guinea pig urine by male guinea pigs, male mouse reproductive behavior, aggression among mice, and chemosensory-evoked ultrasonic vocalizations in mice. We will show that the vomeronasal system appears to be critical for maintaining certain behaviors; in its absence, chemosensory-mediated responses diminish or extinguish. Hence, we suggest that stimulation of the vomeronasal system is itself inherently rewarding. We will also demonstrate that deafferentation of the vomeronasal system neonatally or prior to experience is more detrimental to an animal than deafferentation subsequent to experience and will propose that the importance of stimuli detected by chemosensory systems other than the vomeronasal system, most likely olfaction, is learned during social encounters. These learned cues can later elicit behaviors in the absence of a functional vomeronasal system.

Keywords

Male Mouse Unconditioned Stimulus Intact Male Vomeronasal Organ Ultrasonic Vocalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean, N. J., 1982, Olfactory and vomeronasal mediation of ultrasonic vocalizations in male mice, Physiol. Behav, 28: 31.CrossRefGoogle Scholar
  2. Bean, N. J., 1982, Modulation of agonistic behavior by the dual olfactory system in male mice, Physiol. Behav, 29: 433.CrossRefGoogle Scholar
  3. Bean, N. J., Nunez, A. A., and Wysocki, C. J., 1985, 70kHz vocalizations by male mice do not inhibit aggression in lactating mice, Behav. Neural Biol., under review.Google Scholar
  4. Bean, N. J., and Wysocki, C. J., 1985, Behavioral effects of removal of the vomeronasal organ in neonatal mice, Chem. Senses, in press.Google Scholar
  5. Beauchamp, G. K., Martin, I. G., Wysocki, C. J., and Wellington, J. L., 1982, Chemoinvestigatory and sexual behavior of male guinea pigs following vomeronasal organ removal, Physiol. Behav, 29: 329.CrossRefGoogle Scholar
  6. Beauchamp, G. K., Martin, I. G., Wysocki, C. J., and Wellington, J. L., 1982, Chemoinvestigatory and sexual behavior of male guinea pigs following vomeronasal organ removal, Physiol. Behav, 29: 329.CrossRefGoogle Scholar
  7. Beauchamp, G. K., and Wellington, J. L., 1984, Habituation to individual odors occurs following brief, widely spaced presentations, Physiol. Behav, 32: 269.CrossRefGoogle Scholar
  8. Beauchamp, G. K., Wellington, J. L., Wysocki, C. J., Brand, J. G., Kubie, J. L., and Smith, A. B., Ill, 1983, Chemical communication in the guinea pig: Urinary components of low volatility and their access to the vomeronasal organ, in: “Chemical Signals: Vertebrates and Aquatic Invertebrates, ” D. Muller-Schwarze, and R. M. Silverstein, Plenum Press, New York.Google Scholar
  9. Beauchamp, G. K., Wellington, J. L., Wysocki, C. J., Brand, J. G., Kubie, J. L., and Smith, A. B., Ill, 1983, Chemical communication in the guinea pig: Urinary components of low volatility and their access to the vomeronasal organ, in: “Chemical Signals: Vertebrates and Aquatic Invertebrates, ” D. Muller-Schwarze, and R. M. Silverstein, Plenum Press, New York.Google Scholar
  10. Beltramino, C., and Taleisnik, S., 1983, Release of LH in the female rat by olfactory stimuli, Neuroendocrinology, 36: 53.CrossRefGoogle Scholar
  11. Brunjes, P. C., 1985, Unilateral odor deprivation: Time course of changes in laminar volume, Brain Res. Bull, 14: 233.CrossRefGoogle Scholar
  12. Clancy, A. N., Coquilyn, A., Macrides, F., Gorskki, R. A., Noble, E. P. Sexual behaviour and aggression in male mice: Involvement of the vomeronasal system. J. NeurosciGoogle Scholar
  13. Coquelin, A., Clancy, A. N., Macrides, F., Noble, E. P., and Gorski, R. A., 1984, Pheromonally induced release of luteinizing hormone in male mice: Involvement of the vomeronasal system, J. Neurosci, 4: 2230.Google Scholar
  14. Dizinno, G., Whitney, G., and Nyby, J., 1978, Ultrasonic vocalizations by male mice ( Mus musculus) in response to a female-produced pheromone: Effects of experience, Behav. Biol, 22: 104.Google Scholar
  15. Eccles, R., 1982, Autonomic innervation of the vomeronasal organ of the cat, Physiol. Behav, 28: 1011.CrossRefGoogle Scholar
  16. Halpern, M., and Kubie, J. L., 1984, The role of the ophidian vomeronasal system in species-typical behavior, Trends NeuroSci, 7: 472.CrossRefGoogle Scholar
  17. Johns, M. A., 1980, The role of the vomeronasal system in mammalian reproductive physiology, in: “Chemical Signals in Vertebrates and Aquatic Invertebrates, ” D. Muller-Schwarze, and R. M. Silverstein, eds., Plenum, New York,Google Scholar
  18. Keverne, E. B., 1979, Dual olfactory projections and their significance for behavior, in: “Chemical Ecology: Odour Communication in Animals, ” F. J. Ritter, ed., Elsevier, Amsterdam.Google Scholar
  19. Keverne, E. B., 1983, Pheromonal influences on the endocrine regulation of reproduction, Trends NeuroSci, 6: 381.CrossRefGoogle Scholar
  20. Kubie, J. L., and Halpern, M., 1979, Chemical senses involved in garter snake prey trailing, J. Comp. Physiol. Psychol, 93: 648.CrossRefGoogle Scholar
  21. Ladewig, J., and Hart, B. L., 1980, Flehmen and vomeronasal organ function in male goats, Physiol. Behav, 24: 1067.CrossRefGoogle Scholar
  22. Maggio, J. C., Maggio, J. H., and Whitney, G., 1983, Experience-based vocalization of male mice to female chemosignals, Physiol. Behav, 31: 269.CrossRefGoogle Scholar
  23. Meredith, M., 1983, Sensory physiology of pheromone communication, in “Pheromones and Reproduction in Mammals, ” J. G. Vandenbergh, ed., Academic Press, New York.Google Scholar
  24. Meredith, M. and O’Connell, R. J. 1979. Efferent control of stimulus access to the hamster vomeronasal organ. J. Physiol 268:301.Google Scholar
  25. Nelson, R. S., Fleming, A. A., Wysocki, C. J., Shinder, T. W., and Zucker, I., 1985, Chemosensory and neural influences on photoperiodic responsiveness of laboratory rats, Neuroendocrinology, 40: 285.CrossRefGoogle Scholar
  26. Nyby, J., Bigelow, J., Kerchner, M., and Baebehen, F. 1983 Male mouse (Mus musculus) ultrasonic vocalizayions to female urine: Why is heterosexual experience necessary? Behav. Neural Biol.CrossRefGoogle Scholar
  27. Nyby, J., Dizinno, G., and Whitney, G., 1977, Sexual dimorphism in ultrasonic vocalizations of mice (Mus muscuius): Gonadal hormone regulation, J. Comp. Physiol. Psychol., 91:1424.Google Scholar
  28. Nyby, J., and Whitney, G., 1978, Ultrasonic communication of adult myomorph rodents, Neurosci Biobehav Rev, 2: 1.CrossRefGoogle Scholar
  29. Nyby, J., and Whitney, G., 1983, Experience affects behavioral responses to sex odors, jin: “Chemical Signals: Vertebrates and Aquatic Invertebrates,” D. Muller-Schwarze, and R. M. Silverstein, Plenum Press, New York.Google Scholar
  30. Nyby, J., Whitney, G., Schmitz, S., and Dizinno, G., 1978, Postpubertal experience establishes signal value of mammalian sex odor, Behav. Biol, 22: 545.CrossRefGoogle Scholar
  31. Nyby, J., Wysocki, C. J., Whitney, G., and Dizinno, G., 1977, Pheromonal regulation of male mouse ultrasonic courtship ( Mus musculus), Anim. Behav, 25: 333.CrossRefGoogle Scholar
  32. Nyby, J., Wysocki, C. J., Whitney, G., Dizinno, G., and Schneider, J., 1979, Elicitation of male mouse ( Mus musculus) ultrasonic vocalizations: I. Urinary cues, J. Comp. Physiol. Psychol, 93: 957.Google Scholar
  33. Pomerantz, S. M., Nunez, A. A., and Bean, N. J., 1983, Female behaviorGoogle Scholar
  34. is affected by male ultrasonic vocalizations in house mice, Physiol. Behav, 1983, 31: 91.CrossRefGoogle Scholar
  35. Sanchez-Criado, J. E., Fernandez-Galaz, C., Vaticon, M. D., and Mora-Novard 0. A., 1984, Niveles plasmaticos de LH y testosterona en ratos macho sometidas a deaferentacion periferica del sistema vomeronasal, Rev. Esp. Fisiol, 40: 359.Google Scholar
  36. Scott, J. P., 1966, Agonistic behavior of mice and rats: A review, Am. Zool 6: 683.Google Scholar
  37. Whitney, G., Coble, J. R., Stockton, M. D., and Tilson, E. F., 1973, Ultrasonic vocalizations: Do they facilitate courtship of mice? J. Comp. Physiol. Psychol, 84: 445.Google Scholar
  38. Winans, S. S., and Scalia, F., 1970, Amygdaloid nucleus: New afferent input from the vomeronasal organ, Science, 170: 330.ADSCrossRefGoogle Scholar
  39. Wysocki, C. J,, 1979, Neurobehavioral evidence for the involvement of the vomeronasal system in mammalian reproduction, Neurosci. Biobehav. Rev. 3: 301.Google Scholar
  40. Wysocki, C. J., 1982, Non-olfactory and vomeronasal influences on reproduction, in: “Olfaction and Endocrine Regulation,” W. Breipohl, IRL Press, London.Google Scholar
  41. Wysocki, C. J., Katz, Y., and Bernhard, R., 1983, Male vomeronasal organ mediates female-induced testosterone surges in mice, Biol. Reprod, 28: 917.CrossRefGoogle Scholar
  42. Wysocki, C. J., Nyby, J., Whitney, G., Beauchamp, G. K., and Katz, Y., 1982 The vomeronasal organ: Primary role in mouse chemosensory gender recog nition, Physiol. Behav, 29: 315.Google Scholar
  43. Wysocki, C. J., Wellington, J. L., and Beauchamp, G. K., 1980, Access of urinary nonvolatiles to the mammalian vomeronasal organ, Science, 207: 781.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Charles J. Wysocki
    • 1
  • N. Jay Bean
    • 1
    • 2
  • Gary K. Beauchamp
    • 1
  1. 1.Monell Chemical Senses CenterPhiladalphiaUSA
  2. 2.Department of PsychologyVassar CollegePoughkeepsieUSA

Personalised recommendations