Skip to main content

Chemosensory Orientation Mechanisms of Fish

  • Chapter
Chemical Signals in Vertebrates 4

Abstract

In the aquatic environment, solubility rather than volatility is the limiting factor for chemical dispersion, and thus, compounds of wide variety become potential information messengers. Because most bodies of water are in motion, these stimuli and their information can be carried over considerable distances, and animals such as fish, which are very sensitive to chemical stimulation, may exploit this information for many important functions in their life histories. Chemical signals are known to play significant roles in reproduction, homing, feeding, schooling, defense and parent/young interactions of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, G.P., 1974, Rheotropism in fishes, Biol. Rev., 49: 515.

    Article  Google Scholar 

  • Bossert, W.H., and Wilson, E.O., 1963, The analysis of olfactory communication among animals, J. Theor. Biol., 5: 443.

    Article  Google Scholar 

  • Buckland, F., 1880, “Natural History of British Fishes,” Unwin, London.

    Google Scholar 

  • Carlin, B., 1968, Salmon conservation, tagging experiments and migration of salmon in Sweden, Lect. Ser. Atl. Salm. Assoc., Montreal.

    Google Scholar 

  • Døving, K.B., Westerberg, H. and Johnsen, P.B., 1985, Role of olfaction in the behavioral and neuronal responses of Atlantic salmon, Salmo salar, to hydrographic stratification, Can. Fish. Aquat. Sci., in press.

    Google Scholar 

  • Emanuel, M.E., and Dodson, J.J., 1979, Modification of the rheotropic behavior of male rainbow trout (Salmo gairdneri) by ovarian fluid, J. Fish. Res. Board Can., 36: 63.

    Article  Google Scholar 

  • Farkas, S.R., and Shorey, H.H., 1972, Chemical trail-following by flying insects. A mechanism for orientation to a distant odor source, Science, 178: 67.

    Article  ADS  Google Scholar 

  • Harden-Jones, F.R., 1968, “Fish Migration,” Edward Arnold Ltd., London.

    Google Scholar 

  • Hasler, A.D., and Wisby, W.J., 1951, Discrimination of stream odors by fishes and relation to parent stream behavior, Am. Nat., 85: 223.

    Article  Google Scholar 

  • Hasler, A.D., 1954, Odor perception and orientation in fishes, J. Fish. Res. Board Can., 11: 107.

    Article  Google Scholar 

  • Hasler, A.D., Scholz, A.T., and Horrall, R.M., 1978, Olfactory imprinting and homing in salmon, Am. Sci., 66: 347.

    ADS  Google Scholar 

  • Hasler, A.D., and Scholz, A.T., 1983, “Olfactory Imprinting and Homing in Salmon,” Springer-Verlag, New York.

    Google Scholar 

  • Hodgson, E.S., and Mathewson, R.F., 1971, Chemosensory orientation in sharks, in: “Orientation: Sensory Basis,” H.E. Adler, ed., Ann. NY Acad. Sci., 188:175.

    Google Scholar 

  • Jensen, A.L., and Duncan, R.N., 1971, Homing of transplanted coho salmon, Prog. Fish Cult., 33: 216.

    Article  Google Scholar 

  • Johnsen, P.B., 1978, Behavioral Mechanisms of Upstream Migration and Homestream Selection in Coho Salmon (Oncorhynchus kisutch), Ph.D. Thesis, Univ. Wise., Madison.

    Google Scholar 

  • Johnsen, P.B., and Hasler, A.D., 1980, The use of chemical cues in the upstream migration of coho salmon, Oncorhynchus kisutch Walbaum, J. Fish. Biol., 17: 67.

    Article  Google Scholar 

  • Johnsen, P.B., and Teeter, J.H., 1982, Spatial gradient detection of chemical cues by catfish, J. Comp. Physiol., 140: 95.

    Article  Google Scholar 

  • Johnsen, P.B., 1982, A behavioral control model for homestream selection in salmonids, in: “Proceedings of the Salmon and Trout Migratory Behaviour Symposium,” E.L. Brannon, and E.O. Salo, eds., School of Fisheries, Univ. Washington, Seattle.

    Google Scholar 

  • Johnsen, P.B., 1984, Establishing the physiological and behavioral determinants of chemosensory orientation, in: “Mechanisms of Migration in Fishes,” J.D. McCleave, G.P. Arnold, J.J. Dodson, and W.H. Neill, eds., Plenum Publishing Corp., New York.

    Google Scholar 

  • Johnstone, A.D.F., 1980, The detection of dissolved amino acids by the Atlantic cod, Gadus morhua L., J. Fish. Biol., 17: 219.

    Article  MathSciNet  Google Scholar 

  • Kellogg, F.E., Frizel, D.E., and Wright, R.H., 1962, The olfactory guidance of flying insects, IV, Drosophila, J. Can. Entomol., 94: 884.

    Article  Google Scholar 

  • Kennedy, J.S., 1977, Olfactory responses to distinct plants and other odor sources, in: “Chemical Control of Insect Behavior, Theory and Application,” H.H. Shorey, and J.J. McKelvey, Jr., eds., Wiley-Interscience, New York.

    Google Scholar 

  • Kleerekoper, H., Timms, A M., Westlake, G.F., Davy, F.B., Malar, T., and Anderson, V.H., 1970, An analysis of locomotor behaviour of goldfish (Carassius auratus), Anim. Behav., 18: 317.

    Article  Google Scholar 

  • Kleerekoper, H., 1982, The role of olfaction in the orientation of fishes, in: “Chemoreception in Fishes,” T.J. Hara, ed., Elsevier, New York,

    Google Scholar 

  • Kramer, E., 1975, Orientation of the male silkmoth to the sex attractant Bombykol, in: “Olfaction and Taste 5,” D. Denton, and J.D. Coghlan eds., Academic Press, New York.

    Google Scholar 

  • Nordeng, H., 1977, A pheromone hypothesis for homeward migration in anadromous salmonids, Oikos, 28: 155.

    Article  Google Scholar 

  • Parker, G.H., 1914, The directive influence of the sense of smell in the dogfish, Fish. Bull., 33: 63.

    Google Scholar 

  • Pawson, M.G., 1977, The responses of cod (Gadus morhua) to chemical attractants in moving water, J. Cons. Int. Explor. Mer., 37: 316.

    Google Scholar 

  • Peck, J.N., 1970, Straying and reproduction of coho salmon, Oncorhynchus kisutch, planted in a Lake Superior tributary, Trans. Am. Fish. Soc., 99: 591.

    Article  Google Scholar 

  • Powers, E.B., 1939, Chemical factors affecting the migratory movements of the Pacific salmon, Publ. Am. Assn. Adv. Sci., 8: 72.

    Google Scholar 

  • Powers, E.B., and Clark, R.T., 1943, Further evidence on chemical factors affecting the migratory movements of fishes, especially the salmon, Ecology, 24: 109.

    Article  Google Scholar 

  • Rich, W.H., 1937, Homing of Pacific salmon, Science, 85: 477.

    Article  ADS  Google Scholar 

  • Ricker, W.E., 1972, Hereditary and environmental factors affecting certain salmonid populations, in: “The Stock Concept in Pacific Salmon,” R.C. Simon, and P.A. Larkin, eds., MacMillan Lectures in Fisheries, Univ. British Columbia, Vancouver.

    Google Scholar 

  • Scheer, B.T., 1939, Homing instinct in salmon, Quart. Rev. Biol., 14: 408.

    Article  Google Scholar 

  • Scholz, A.T., Horrail, R.M., Cooper, J.C., and Hasler, A.D., 1976, Imprinting to chemical cues: The basis for homestream selection in salmon, Science, 192: 1247.

    Article  ADS  Google Scholar 

  • Stasko, A.B., 1971, A review of field studies on fish orientation, Ann. NY Acad. Sci., 188: 12.

    Article  ADS  Google Scholar 

  • Traynier, R.M.M., 1968, Sex attraction in the Mediterranean flour Moth Anagaster kuhniella: Location of the female by the male, Can. Entomol., 100: 5.

    Article  Google Scholar 

  • Walton, I., 1653,“The Compleat Angler or the Contemplative Man’s Recreation,” London.

    Google Scholar 

  • Ward, H.B., 1921a, Some features in the migration of the sockeye salmon and their practical significance, Trans. Am. Fish. Soc., 50: 387.

    Article  Google Scholar 

  • Ward, H.B., 1921b, Some of the factors controlling the migration and spawning of the Alaska red salmon, Ecology, 2: 235.

    Article  Google Scholar 

  • Ward, H.B., 1939, Factors controlling salmon migrations, Publ. Am. Assn. Adv. Sci., 8: 60.

    Google Scholar 

  • Westerberg, H., 1982, Ultrasonic tracking of Atlantic salmon. II. Swimming depth and temperature stratification, Inst. of Fresh. Res., Drottningholm Rep., 60: 102.

    Google Scholar 

  • Westerberg, H., 1984, The orientation of fish and the vertical stratification of fine and microstructure scales, in: “Mechanisms of Migration in Fishes,” J.D. McCleave, W.H. Neill, J.J. Dodson, and G.P. Arnold, eds., Plenum Publ. Corp., New York.

    Google Scholar 

  • Wisby, W.J., and Hasler, A.D., 1954, Effect of olfactory occlusion on migrating silver salmon, Oncorhynchus kisutch, J. Fish. Res. Board Can., 11: 472.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Johnsen, P.B. (1986). Chemosensory Orientation Mechanisms of Fish. In: Duvall, D., Müller-Schwarze, D., Silverstein, R.M. (eds) Chemical Signals in Vertebrates 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2235-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2235-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9310-1

  • Online ISBN: 978-1-4613-2235-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics