Advertisement

Phase Relationships in Y-Si-Al-O-N Ceramics

  • D. P. Thompson

Abstract

During the last fifteen years of silicon nitride development, yttrium oxide has emerged as the best sintering additive for producing fully dense materials which combine good room-temperature strength with reasonable high temperature strength at temperatures in excess of 1000°C. ß’-sialons, which offer advantages over silicon nitride of easier fabrication, also require an additive for densification and again, yttria has proved to be the most satisfactory. The high temperature properties of these materials are determined mainly by the grain boundary phase assemblage and this in turn is determined by phase relationships in the yttrium sialon system at the sintering temperature, at any post-preparative heat treatment temperature and also at the likely operating temperature of the material. The amount of work involved in determining phase relationships in a five-component system over a wide temperature range is extremely large; researchers have therefore focused their attentions on localised regions of the system which are of particular relevance to commercial materials. A good summary of previous work in the yttrium sialon and other sialon systems has been given by Jack1. The present paper summarises the current state of understanding of phase relationships in the yttrium sialon system and includes more recent work carried out at Newcastle on previously unexplored regions of the system.

Keywords

Phase Relationship Yttrium Aluminium Garnet Yttrium Oxide Unit Cell Dimension Aluminium Nitrides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. H. Jack, “The relationship of phase diagrams to research and development of sialons”, in: “Phase Diagrams: Materials Science and Technology”, vol 5, A. M. Alper, ed., Academic Press, New York, 241 (1978).Google Scholar
  2. 2.
    A. Tsuge, H. Kudo and K. Komeya, Reaction of Si3N4 and Y2O3 in Hot-pressing, J. Am. Ceram. Soc., 57: 269 (1974).CrossRefGoogle Scholar
  3. 3.
    R. R. Wills, S. Holmquist, J. M. Wimmer and J. A. Cunningham, Phase relations in the system Si3N4-Y203-Si02, J. Mater. Sci., 11: 1305 (1976).CrossRefGoogle Scholar
  4. 4.
    K. H. Jack, Sialons and related nitrogen ceramics, J. Mater. Sci., 11: 1135 (1976).CrossRefGoogle Scholar
  5. 5.
    F. F. Lange, S.C. Singhal and R. C. Kuznicki, Phase relations and stability studies of the Si3N4-Si02-Y203 pseudo ternary system, Westinghouse Research Report No. 76-9D4-P0WDR-R1 (1976).Google Scholar
  6. 6.
    L. J. Gauckler, H. Hohnke and T. Y. Tien, The system Si3N4-Si02-Y203, J. Amer. Ceram. Soc., 63: 35 (1980).CrossRefGoogle Scholar
  7. 7.
    J. Felsche, The crystal chemistry of the rare-earth silicates, Structure and Bonding, 13: 100 (1973).Google Scholar
  8. 8.
    A.W.J.M. Rae, Unpublished work, University of Newcastle upon Tyne, (1976).Google Scholar
  9. 9.
    Ito and H. Johnson, JCPDS Index card No. 21 - 1459Google Scholar
  10. 10.
    J. Butler, R.J. Lumby, A. Szweda and M. H. Lewis, Syalon ceramics for 4 high temperature engines; an illustration of grain boundary engineering, in Proc. Int. Symp: “Ceramic components for Engine”, S. Somiya, E. Kanai and K. Ando, eds., Hakone, (1983).Google Scholar
  11. 11.
    M. B. Trigg and K. H. Jack, Silicon oxynitride and O’sialon ceramics, Proc. Int. Symp: “Ceramic components for Engine”, S. Somiya, E. Kanai and K. Ando, eds., Hakone, (1983).Google Scholar
  12. 12.
    G. Z. Cao, Z. K. Huang, X. R. Fu and D. S. Yan, Phase equilibrium studies in Si2N20-containing systems, I: Phase relations in the Si2N20-Al203~ Y2O3 system, (to be published).Google Scholar
  13. 13.
    M. H. Lewis, A. R. Bhatti, R. J. Lumby and B. North, The microstructure of sintered Si-Al-0-N ceramics, J. Mater. Sci., 15: 103 (1980).CrossRefGoogle Scholar
  14. 14.
    N. A. Toropov, I. A. Bondar, F. Ya. Galakhov, X. S. Nikogosyan and N. V. Vinogradova in: “Phase Diagrams for Ceramists”, E. M. Levin, C. R. Robbins and H. F. McMurdie, eds., 2:2344 (1969).Google Scholar
  15. 15.
    E. F. Bertaut and J. Mareschal, Un Nouveau type de structure hexagonale, AITO3 (T=Y,Eu,Gd,Tb,Dy,Ho,Er), C. R. Acad. Sci. Paris C, 257: 867 (1963).Google Scholar
  16. 16.
    A.W.J.M. Rae, Ph.D. Thesis, University of Newcastle upon Tyne, (1976).Google Scholar
  17. 17.
    N. E. Cother and P. Hodgson, The development of syalon ceramics and their engineering applications, Trans. J. Brit. Ceram. Soc., 81: 141 (1982).Google Scholar
  18. 18.
    I. K. Naik and T. Y. Tien, Subsolidus phase relations in part of the system Si,Al,Y/N,0, J. Amer. Ceram. Soc., 62: 642 (1979).CrossRefGoogle Scholar
  19. 19.
    S. Boskovid, Densification in the system Si3N4-YAG-sialon, Science of Ceramics, 11: 225 (1981).Google Scholar
  20. 20.
    H. Hohnke and T. Y. Tien, Solid-liquid reactions in part of the system Si,Al,Y/N,0, Proceedings of the NATO Advanced Study Institute: “Progress in nitrogen ceramics”, F. L. Riley, Ed., 101 (1981).Google Scholar
  21. 21.
    R. A. L, Drew, S. Hampshire and K. H. Jack, The preparation and properties of oxynitride glasses, Proceedings of the NATO Advanced Study Institute: “Progress in nitrogen ceramics”, F. L. Riley, ed., 323 (1981).Google Scholar
  22. 22.
    S. Boskovid and E. Kostic, Formation of sialons in systems Si3N4-3Y203.5Al203-Si2Al404N4 and Si3N4-3Dy203.5Al203-Si2Al404N4, Science of Ceramics 12: 391 (1983).Google Scholar
  23. 23.
    C. Chatfield, T. Ekstrom and M. Mikus, Microstructural investigation of SiAlON materials, (to be published).Google Scholar
  24. 24.
    S. Hampshire, H. K. Park, D. P. Thompson and K. H. Jack, α’-sialon ceramics, Nature 274: 880 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. P. Thompson
    • 1
    • 2
  1. 1.Wolfson Research Group for High-Strength MaterialsUniversity of Newcastle upon TyneUK
  2. 2.Department of Metallurgy and Engineering MaterialsUniversity of Newcastle upon TyneUK

Personalised recommendations