Advertisement

Microstructural Engineering of Ceramics for High-Temperature Application

  • M. H. Lewis

Abstract

The meaning of ‘high’-temperature in relation to ceramic applications is normally interpreted in terms of the current requirement to operate energy—conversion systems at temperatures beyond that achievable with metallic alloy components. Thus in gas-turbines a temperature increment of 200–400°C above the ∼1000°C limit set by superalloy properties is desireable for improved efficiency. The 1000–1400°C temperature interval is also that in which severe problems are introduced in using ceramic components under stress, especially in oxidising or corrosive environments.

Keywords

Diffusional Creep Transient Creep Cavity Nucleation Substitution Level Eutectic Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. H. Jack, J. Mater. Sci. 11 1135 (1976).CrossRefGoogle Scholar
  2. 2.
    I. Idrestedt and C. Brosset, Acta. Chem. Scand. 18 1879 (1964).CrossRefGoogle Scholar
  3. 3.
    M. H. Lewis, C. J. Reed and N. D. Butler, Mater. Sci. Eng., 71 87 (1985)CrossRefGoogle Scholar
  4. 4.
    D. P. Thompson, in ‘Nitrogen Ceramics’, ed. F. L. Riley ( Noordhoff, Leyden ) 129 (1977).Google Scholar
  5. 5.
    N. D. Butler, R. Dupree and M. H. Lewis, J. Mater. Sci. Letters 3 469 (1984).CrossRefGoogle Scholar
  6. 6.
    K. H. Jack in ‘Progress in Nitrogen Ceramics’, ed. F. L. Riley (Martinus Nijhoff) 45 (1983).Google Scholar
  7. 7.
    G. G. Deeley, J. M. Herbert and N. C. Moore, Powder Metall. 8 145 (1961).CrossRefGoogle Scholar
  8. 8.
    P. Drew and M. H. Lewis, J. Mater. Sci., 9 261 (1974).CrossRefGoogle Scholar
  9. 9.
    G. E. Gazza, Bull. Amer. Ceram. Soc. 54 778 (1975).Google Scholar
  10. 10.
    F. F. Lange in ‘Progress in Nitrogen Ceramics’, ed. F. L. Riley (Martinus Nijhoff) 467 (1983).Google Scholar
  11. 11.
    M. H. Lewis, B. D. Powell, P. Drew, R. J. Lumby, B. North and A. J. Taylor, J. Mater. Sci., 12 61 (1977).CrossRefGoogle Scholar
  12. 12.
    M. H. Lewis, A. R. Bhatti, R. J. Lumby and B. North, J. Mater. Sci., 15 103 (1980).CrossRefGoogle Scholar
  13. 13.
    M. H. Lewis and R. J. Lumby, Powder Metall. 26 73 (1983).Google Scholar
  14. 14.
    G. Leng-tfard and M. H. Lewis, Mater. Sci. Eng., 71 101 (1985).CrossRefGoogle Scholar
  15. 15.
    M. H. Lewis, A. R. Bhatti, R. J. Lumby and B. North, J. Mater. Sci., 15 438 (1980).CrossRefGoogle Scholar
  16. 16.
    J. Dodsworth and D. P. Thompson, ‘Special Ceramics 7’, Proc.Brit. Ceram.Soc. 51 (1981).Google Scholar
  17. 17.
    R. K. Ball, M. H. Lewis, A. Szweda and E. Butler, Mater. Sci. Eng., 71 137 (1985).CrossRefGoogle Scholar
  18. 18.
    N. D. Butler and M. H. Lewis, unpublished research, Univ. of Warwick (1983).Google Scholar
  19. 19.
    H. T. Larker in ‘Progress in Nitrogen Ceramics’, ed. F. L. Riley (Martinus Nijhoff) 717 (1983).Google Scholar
  20. 20.
    G. Bandyopadhyay, K. W. French and C. L. Quackenbush, Proc. 21st Automative Technology Development Meeting (Dearborn, Mich., Nov. 1983 ).Google Scholar
  21. 21.
    B. S. B. Karunaratne and M. H. Lewis, J. Mater. Sci. 15 449 (1980).CrossRefGoogle Scholar
  22. 22.
    S. M. Winder and M. H. Lewis, J. Mater. Sci. Letters 4 241 (1985).CrossRefGoogle Scholar
  23. 23.
    M. H. Lewis, S. Mason and A. Szweda, in Proc. Conf. on Non-Oxide Technical Ceramics, Limerick (to be published - Elsevier 1985 ).Google Scholar
  24. 24.
    S. Wild, G. Leng-Ward and M. H. Lewis, J. Mater. Sci. 16 1815 (1981).CrossRefGoogle Scholar
  25. 25.
    B. S. B. Karunaratne and M. H. Lewis, J. Mater. Sci. 15, 1781 (1980).CrossRefGoogle Scholar
  26. 26.
    R. Raj, R. L. Tsai, J-G. Wang and C. K. Chyung in ‘Deformation of Ceramics II’, ed. R. E. Tressler and R. C. Bradt (Plenum Press) 353 (1984).Google Scholar
  27. 27.
    M. H. Lewis and B. S. B. Karunaratne in ‘Fracture Mechanics of Ceramics, Rocks and Concrete ’ (ASTM-STP745) 13 (1981).Google Scholar
  28. 28.
    T. J. Chuang, J. Amer. Ceram. Soc., 65 93 (1982).CrossRefGoogle Scholar
  29. 29.
    D. Cubicciotti and K. H. Lau, J. Amer. Ceram. Soc. 61 512 (1978).CrossRefGoogle Scholar
  30. 30.
    M. H. Lewis and P. Barnard, J. Mater. Sci. 15 443 (1980).CrossRefGoogle Scholar
  31. 31.
    M. H. Lewis, B. S. B. Karunaratne, J. Meredith and C. Pickering in ‘Creep and Fracture of Engineering Materials and Structures’, ed. B. Wiltshire and D. Owen (Pineridge Press) 365 (1981).Google Scholar
  32. 32.
    M. H. Lewis, G. R. Heath, S. M. Winder and R. J. Lumby in ‘Deformation of Ceramics II’, ed. R. E. Tressler and R. C. Bradt (Plenum Press) 605 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. H. Lewis
    • 1
  1. 1.Centre for Advanced Materials TechnologyUniversity of WarwickUK

Personalised recommendations