Toughness Anisotropy of a SiC/SiC Laminar Composite

  • Y. M. Pan
  • M. Sakai
  • J. W. Warren
  • R. C. Bradt


The toughnesses of a 2-D laminar SiC/SiC composite consisting of a 40 v/o 8H/S weave Nicalon fabric and a CVI beta SiC matrix were measured at room temperature for the three principal orthogonal directions. The interlaminar toughness was 1.30 MPa m1/2 and those across the fabric were 9.12 and 12.56 MPa m1/2. Other mechanical properties exhibited similar anisotropy. The results are compared with the toughnesses of other SiC materials and a C/C laminar composite of similar macroscopic construction.


Laminar Composite Ceramic Composite Wake Region Load Point Displacement Maximum Fracture Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Brennan and K.W. Prewo, J. Mat. Sc. 17, 2371 (1982).CrossRefGoogle Scholar
  2. 2.
    M. Dauchier, P. Lamicq, and J. Mace, Rev. Int. hautes Temp. Ref. Fr. 19, 285 (1982).Google Scholar
  3. 3.
    E. Fitzer, D. Hagen, and H. Strohmeier, p. 525, “Proc. 7th Int. Conf. CVD”, Electrochem. Soc., Princeton (1979).Google Scholar
  4. 4.
    A.J. Caputo and W.J. Lackey, “Fabrication of Fiber Reinforced Ceramic Composites by CVI”, Oak Ridge National Laboratory Report, ORNL/TM-9235, Oct. (1984).Google Scholar
  5. 5.
    J.W. Warren, “Fiber and Grain Reinforced CVI SiC Matrix Composites”, Amer. Cer. Soc. Conf., Cocoa Beach, FL., Jan. (1985).Google Scholar
  6. 6.
    E. Fitzer and W. Huttner, J. Phys. D: Appl Phys. 14, 347 (1981).CrossRefGoogle Scholar
  7. 7.
    D. Minz, R.T. Bubsey, and J.E. Srawley, Int. J. Fract. 16, (9), 359 (1980).CrossRefGoogle Scholar
  8. 8.
    M. Sakai and K. Yamasaki, J. Amer. Ceram. Soc. 66, (5), 371 (1983).CrossRefGoogle Scholar
  9. 9.
    M. Sakai, K. Urashima, and M. Inagaki, J. Amer. Ceram. Soc. 66. (12) 868 (1983).CrossRefGoogle Scholar
  10. 10.
    M. Sakai and R.C. Bradt, “Graphical Methods for Determining Non-Linear Fracture Parameters”, (to be published) Proc. 4th Int. Fract. Mech. Ceramics, VPI (1985).Google Scholar
  11. 11.
    J. Eftis, D.L. Jones, and H. Liebowitz, Eng. Fract. Mech. 17, 481 (1975).Google Scholar
  12. 12.
    G.C. Sih, P.C. Paris, and G.R. Irwin, Int. J. Fract. Mech. 1, 189 (1965).Google Scholar
  13. 13.
    M. Sakai, R.C. Bradt, D.B. Fischbach, “Fracture of Pyrolytic Carbon” (to be published in J. Mat. Sc.).Google Scholar
  14. 14.
    D.K. Hale and A. Kelly, p. 405, Vol. 2, Ann. Rev. Mat. Sc. (1972).CrossRefGoogle Scholar
  15. 15.
    R.W. Rice, Cer. Eng. Sc. Proc. 2, 7–8, 661 (1981).Google Scholar
  16. 16.
    M. Sakai, R.C. Bradt, and A.S. Kobayashi, (to be published).Google Scholar
  17. 17.
    Y.M. Pan and R.C. Bradt (to be published).Google Scholar
  18. 18.
    H. Abe, H. Chandan, and R.C. Bradt, Bull Amer. Cer. Soc. 57, (6) 587 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Y. M. Pan
    • 1
  • M. Sakai
    • 1
  • J. W. Warren
    • 2
  • R. C. Bradt
    • 1
  1. 1.Dept. of Mat. Sc. and Eng.Univ. of WASeattleUSA
  2. 2.Refractory Composites, Inc.WhittierUSA

Personalised recommendations