Skip to main content

Influence of Microstructure and Chemistry on the Electrical Characteristic of ZnO Varistors

  • Chapter
Tailoring Multiphase and Composite Ceramics

Abstract

The ZnO voltage limiter or varistor1 has an outstanding nonlinear current-voltage (I-V) characteristic and, as such, is used extensively to suppress the transient voltage surges encountered in the lightning and switching surges.2 The advancement in the state-of-the-art of the varistor in recent years3−9 makes it impossible to describe all the elements of this development within the scope of this paper. The objective of this paper is to concentrate on the microstructure and chemistry of the ZnO varistor and their effects on electrical properties. However, in order to appreciate this correlation, it is first necessary to briefly describe the current- voltage (I-V) characteristics of the varistor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Matsuoka, “Non-ohmic Properties of Zinc Oxide Ceramics,” Jap. J. Appl. Phys., 10, pp. 736–746 (1971).

    Article  CAS  Google Scholar 

  2. A. Sweetana, T. K. Gupta, W. G. Carlson, R. Grekila, N. Kunkle, and J. Osterhout, “Gapless Surge Arrestors for Power Systems Applications,” EPRI, EL-3166, Vol. 1, Final Report, September 1983.

    Google Scholar 

  3. W. G. Morris, “Electrical Properties of ZnO-Bi2O3 Ceramics,” J. Am. Ceram. Soc., 56, pp. 360–364 (1973).

    Article  CAS  Google Scholar 

  4. L. M. Levinson and H. R. Philipp, “The Physics of Metal Oxide Varistors,” J. Appl. Phys., 46, pp. 1332–1341 (1975).

    Article  CAS  Google Scholar 

  5. P. R. Emtage, “The Physics of Zinc Oxide Varistors,” J. Appl. Phys., 48, pp. 4372–4384 (1977).

    Article  CAS  Google Scholar 

  6. K. Eda, “Conduction Mechanism of Non-ohmic Zinc Oxide Ceramics,” J. Appl. Phys., 49, pp. 2964–2972 (1978).

    Article  CAS  Google Scholar 

  7. P. L. Hower and T. K. Gupta, “A Barrier Model for ZnO Varistors,” J. Appl. Phys., 50, pp. 4847–4855 (1979).

    Article  CAS  Google Scholar 

  8. G. D. Mahan, L. M. Levinson, and H. R. Philipp, “Theory of Conduction in ZnO Varistors,” J. Appl. Phys., 50, pp. 2799–2812 (1979).

    Article  CAS  Google Scholar 

  9. R. Einzinger, “Metal Oxide Varistor Action—A Homojunction Breakdown Mechanism,” App. Surf. Sci., 1 pp. 329–341 (1978).

    Article  CAS  Google Scholar 

  10. W. G. Carlson and T. K. Gupta, “Improved Varistor Nonlinearity via Donor Impurity Doping,” J. Appl. Phys., 53, pp. 5746–5753 (1982).

    Article  CAS  Google Scholar 

  11. M. Matsuoka, T. Masuyama, and Y. Iida, “Voltage Nonlinearity of Zinc Oxide Ceramics Doped with Alkali Earth Metal Oxide,” Jap. J. Appl. Phys., 8 p. 1275 (1969).

    Article  CAS  Google Scholar 

  12. D. R. Clarke, “The Microstructural Location of the Intergranular Metal Oxide Phase in a Zinc Oxide Varistor,” J. Appl. Phys., 49, p. 2407 (1978).

    Article  CAS  Google Scholar 

  13. A. T. Santhanam, T. K. Gupta, and W. G. Carlson, “Microstruetural Evaluation of Multicomponent ZnO Ceramics,” J. Appl. Phys., 50 (2), pp. 852–859 (1979).

    Article  CAS  Google Scholar 

  14. W. G. Morris, “Physical Properties of the Electrical Barriers in Varistors,” J. Vac. Sci. Technol., 13 (4), p. 926 (1976).

    Article  CAS  Google Scholar 

  15. J. Wong, “Nature of Intergranular Phase in Non-ohmic ZnO Ceramics Containing 0.5 Mol.% Bi2O3,” J. Am. Ceram. Soc., 57, pp. 357–359

    Google Scholar 

  16. J. Wong, P. Rao, and E. F. Koch, “Nature of an Intergranular Thin-Film Phase in a Highly Non-ohmic Metal Oxide Varistor,” J. Appl. Phys., 46 (4), p. 1827 (1975).

    Article  CAS  Google Scholar 

  17. M. Inada, “Crystal Phases of Non-ohmic Zinc Oxide Ceramics,” Jap. J. Appl. Phys., 17 (1), pp. 1–10 (1978).

    Article  CAS  Google Scholar 

  18. M. Inada, “Microstrueture of Non-ohmic Zinc Oxide Ceramics,” Jap. J. Appl. Phys., 17 (4), pp. 673–677 (1978).

    Article  CAS  Google Scholar 

  19. W. D. Kingery, J. B. Van der Sande, and T. Mitamura, “A Scanning Transmission Electron Microscopy Investigation of Grain Boundary Segregation in a Zn0-Bi2O3 Varistor,” J. Am. Ceram. Soc., 62 (3–4), p. 221 (1979).

    Article  CAS  Google Scholar 

  20. J. Wong, “Microstrueture and Phase Transformation in a Highly Non-ohmic Metal Oxide Varistor Ceramic,” J. Appl. Phys., 46 (4), pp. 1653–1659 (1975).

    Article  CAS  Google Scholar 

  21. P. Williams, O. L. Krivanek, and G. Thomas, “Microstrueture-Property Relationship of Rare Earth Zinc Oxide Varistors,” J. Appl. Phys., 51 (7), p. 3930 (1980).

    Article  CAS  Google Scholar 

  22. M. Inada, Formation of Non-ohmic Zinc Oxide Ceramics,” Jap. J. Appl. Phys., 19 (3), pp. 409–419 (1980).

    Article  CAS  Google Scholar 

  23. J. Wong, “Sintering and Varistor Characteristics of Zn0-Bi2O3 Ceramics,” J. Appl. Phys., 51 (8), p. 4453 (1980).

    Article  CAS  Google Scholar 

  24. J. Wong and W. G. Morris, “Microstructure and Phases in Non-ohmic ZnO-Bi2O3 Ceramics,” Ceram. Bull., 53, p. 816 (1974).

    CAS  Google Scholar 

  25. D. R. Clarke, “Grain Boundary Segregation in a Commercial ZnO-Based Varistor,” J. Appl. Phys., 50 (11), p. 6829 (1979).

    Article  CAS  Google Scholar 

  26. T. K. Gupta and W. G. Carlson, “A Grain Boundary Defect Model for Instability/Stability of ZnO Varistor,” to be published in J. Mat. Sci.

    Google Scholar 

  27. T. K. Gupta and W. G. Carlson, “Barrier Voltage and Its Effect on Stability of ZnO Varistor,” J. Appl. Phys., 53 (11), pp. 7401–7409 (1982).

    Article  CAS  Google Scholar 

  28. T. K. Gupta, “60 Hz AC Characteristic of ZnO Varistor Below Breakdown Voltage,” 1984 Conference on Electrical Insl. and Dielectric Phenomena, IEEE Elec. Insl. Soc., October 21–25, pp. 437–447 (1984).

    Google Scholar 

  29. G. Heiland and E. Mollwo, in Solid State Physics, Vol. 8, Ed. by F. Seitz and D. Turnbull, Academic Press, New York, p. 215.

    Google Scholar 

  30. R. A. Swalin, in Thermodynamics of Solids, Wiley, New York, 1962, Chapter 15.

    Google Scholar 

  31. T. Miyoshi, K. Maeda, K. Takahashi, and T. Yamazaki, “Effects of Dopants on Characteristics of ZnO Varistors,” in Advances in Ceramics, Vol. 1, Ed. by L. M. Levinson and D. Hill, Am. Ceram. Soc., 1981, p. 309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Gupta, T.K. (1986). Influence of Microstructure and Chemistry on the Electrical Characteristic of ZnO Varistors. In: Tressler, R.E., Messing, G.L., Pantano, C.G., Newnham, R.E. (eds) Tailoring Multiphase and Composite Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2233-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2233-7_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9309-5

  • Online ISBN: 978-1-4613-2233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics