Advertisement

Hip of Liquid Phase Sintered Ceramic Composites

  • O-H. Kwon
  • G. L. Messing

Abstract

Many ceramics today are multiphasic or composite by design to obtain unique combinations of optical, thermal, electrical and mechanical properties. Because the reliability and the ultimate properties of these materials often require full density and a pore-free, fine-grained microstructure, hot isostatic pressing (HIP) is receiving increased utilization for their fabrication.

Keywords

Dihedral Angle Silicate Glass Liquid Phase Sinter Porous Body Capillary Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Amberg, E. A. Nylander, and B. Uhrenius, Powder Metall. Intl., 6 [4] 178–180 (1974).Google Scholar
  2. 2.
    E. Lardner, Powder Metall., 18 [35] 47–52 (1975).Google Scholar
  3. 3.
    U. Engel and H. Hubner, J. Mater. Sci., 13 [9] 2003–2012 (1978).CrossRefGoogle Scholar
  4. 4.
    E. Takama and M. Ito, IEEE Trans, on Magnetics, Vol. MAG-151 [6] 1858–60 (1979).CrossRefGoogle Scholar
  5. 5.
    H. C. Yeh and P. F. Sikora, Amer. Ceram. Soc. Bull., 58 [4] 444–447 (1979).Google Scholar
  6. 6.
    R. R. Wills, M. C. Brockway, L. G. McCoy, and D. E. Niesz, Ceram. Eng. & Sci. Proc., 1[7–8] (B) 534–539 (1980).Google Scholar
  7. 7.
    T. Yamada, M. Shimada, and M. Koizumi, Amer. Ceram. Soc. Bull., 60 [11] 1225–1228 (1981).Google Scholar
  8. 8.
    O. Yeheskel, Y. Gefen, and M. Talianker, J. Mater. Sci., 19[3] 745–752Google Scholar
  9. 9.
    K. Homma, T. Tatuno, H. Okada, and T. Fujikawa, Proc. of the 25th Japan Congress on Materials Research, pp. 213–17, Soc. of Mater. Sci., Japan (March 1982).Google Scholar
  10. 10.
    G. K. Watson and T. J. Moore, Automotive Technology Development Meeting, Dearborn, Michigan (October 1981).Google Scholar
  11. 11.
    F. F. Lange, J. Amer. Ceram. Soc., 66 [6] 396–398 (1983).CrossRefGoogle Scholar
  12. 12.
    S. Hori, M. Yoshimura, S. Somiya and H. Kaji, J. Mater. Sci. Letters, 3 242–44 (1984).CrossRefGoogle Scholar
  13. 13.
    K. Tsukuma, K. Ueda, and M. Shimada, J. Am. Ceram. Soc., 68 [1] C4–5 (1985).CrossRefGoogle Scholar
  14. 14.
    K. Tsukuma, K. Ueda, K. Matsushita, and M. Shimada, J. Am. Ceram. Soc., 68 [2] C56–58 (1985).CrossRefGoogle Scholar
  15. 15.
    P. J. Wray, Acta Metall., 24 [1] 125–135 (1976).Google Scholar
  16. 16.
    J. D. McClelland, J. Amer. Ceram. Soc., 44 [10] 526 (1961).CrossRefGoogle Scholar
  17. 17.
    R. M. Spriggs and T. Vasilos, J. Amer. Ceram. Soc., 47 [1] 47 (1964).CrossRefGoogle Scholar
  18. 18.
    P. L. Farnsworth and R. L. Coble, J. Amer. Ceram. Soc., 49 [5] 264–268 (1966).CrossRefGoogle Scholar
  19. 19.
    E. Arzt, M. F. Ashby and K. E. Easterling, Metall, Trans., 14 A [2] 211–21 (1983).Google Scholar
  20. 20.
    R. L. Coble and M. C. Flemings, Metall, Trans., 2 [2] 409–15 (1971).CrossRefGoogle Scholar
  21. 21.
    M. Cable, Glass Tech., 2 [2] 60–70 (1961).Google Scholar
  22. 22.
    C. C. Dollins and F. A. Nichols, J. Nucl. Mater., 66 143–57 (1977).CrossRefGoogle Scholar
  23. 23.
    J. E. Shelby, “Molecular Solubility and Diffusion,” in: Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus (Eds.), Vol. 17: Glass II, Academic Press, New York (1979).Google Scholar
  24. 24.
    H. A. Schaeffer, J. Non-Crystal. Solids 67 [1–3] 19–33 (1984).CrossRefGoogle Scholar
  25. 25.
    S. P. Faile and D. M. Roy, J. Amer. Ceram. Soc., 56 [1] 12–16 (1973).CrossRefGoogle Scholar
  26. 26.
    E. W. Washburn, Physical Rev., 2nd Ser., 18 [3] 273–83 (1921).Google Scholar
  27. 27.
    E. K. Rideal, Phil. Mag., 44, 1152–59 (1922).Google Scholar
  28. 28.
    A. M. Schwartz, Ind. and Eng. Chem., 61 [1] 10–21 (1969).CrossRefGoogle Scholar
  29. 29.
    O-H. Kwon and G. L. Messing, unpublished work.Google Scholar
  30. 30.
    E. F. Riebling, Can. J. Chem., 42, 2811–21 (1964).CrossRefGoogle Scholar
  31. 31.
    I. A. Aksay, C. E. Höge, and J. A. Pask, J. Phys. Chem., 78 [12] 1178–83 (1974).CrossRefGoogle Scholar
  32. 32.
    A. P. Raju, I. A. Aksay, and J. A. Pask, Amer. Ceram. Soc. Bull., 52 [2] 166–69 (1973).Google Scholar
  33. 33.
    P. L. Flaitz, Ph.D. Thesis, University of California, Berkeley (1982).Google Scholar
  34. 34.
    O. J. Kwon and D. N. Yoon, Sintering Processes (Proc. 5th Intl. Conf. on Sintering and Related Phenomena, June 1979, Notre Dame, U.S.A.), ed. G. C. Kuczynski, Plenum Press, New York pp. 203–218 (1980).Google Scholar
  35. 35.
    H. H. Park, S. J. Cho, and D. N. Yoon, Metall. Trans. A 15 [6] 1075–1080 (1984).CrossRefGoogle Scholar
  36. 36.
    S. J. L. Kang, W. A. Kaysser, G. Petzow, and D. N. Yoon, Powder Metall., 27 [2] 97–100 (1984).Google Scholar
  37. 37.
    O-H. Kwon and G. L. Messing, J. Am. Ceram. Soc., 67 [3] C43–45 (1984).Google Scholar
  38. 38.
    D. Tabor, in Adhesion,ed. D. D. Eley, Oxford Univ. Press, pp. 115–206 (1961).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • O-H. Kwon
    • 1
  • G. L. Messing
    • 1
  1. 1.Department of Material Science & EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations