Grain Resistivity and Conduction in Metal Oxide Varistors

  • Herbert R. Philipp

Abstract

Metal oxide varistors are ceramic devices with highly nonlinear current-voltage characteristics similar to back-to-back Zener diodes.1−4 Typical I-V characteristics for a metal oxide varistor at 77 K and for a small range of temperatures near 300 K are shown in Fig. 1. They are produced by sintering ZnO powder together with small amounts (1 to 10 mole %) of other oxide additives. The resultant structure, which can be idealized by the “block model” shown in Fig. 2, is comprised of semiconducting n-type ZnO grains of dimension 10 to 20 μm surrounded by insulating barriers at the ZnO grain boundaries. These varistors have proved useful in a variety of applications particularly as high-quality voltage surge suppressors.5,6

Keywords

Zinc Peris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Matsuska, “Nonohmic Properties of Zinc Oxide Ceramics,” Jpn. J. Appl. Phys., 10: 136 (1971).Google Scholar
  2. 2.
    L. M. Levinson and H. R. Philipp, “The Physics of Metal Oxide Varistors,” J. Appl. Phys., 46: 1332 (1975).CrossRefGoogle Scholar
  3. 3.
    L. M. Levinson and H. R. Philipp, “ZnO Varistors for Transient Protection,” IEEE Trans. Parts Hybrids Packaging, PHP-13: 338 (1977).Google Scholar
  4. 4.
    G. D. Mahan, L. M. Levinson, and H. R. Philipp, “Theory of Conduction in ZnO Varistors,” J. Appl. Phys., 50: 2799 (1979).CrossRefGoogle Scholar
  5. 5.
    E. C. Sakshaug, J. S. Kresge, and S. A. Miske, “A New Concept in Station Arrestor Design,” IEEE Trans. Power App. Syst., PAS-96: 647 (1977).Google Scholar
  6. 6.
    Transient Voltage Suppression Manual,” J. C. Hey and W. P. Kram, eds., General Electric Semiconductor Products Dept., Auburn, N.Y. (1978).Google Scholar
  7. 7.
    L. M. Levinson and H. R. Philipp, “AC Properties of Metal Oxide Varistors,” J. Appl. Phys. 47: 3116 (1976).CrossRefGoogle Scholar
  8. 8.
    L. M. Levinson and H. R. Philipp, “High Frequency and High Current Studies of Metal Oxide Varistors,” J. Appl. Phys., 47: 1117 (1976).CrossRefGoogle Scholar
  9. 9.
    L. M. Levinson and H. R. Philipp, “Low Temperature AC Properties of Metal Oxide Varistors,” J. Appl. Phy., 49: 6142 (1978).CrossRefGoogle Scholar
  10. 10.
    H. R. Philipp and L. M. Levinson, “Short Time Pulse Response of ZnO Varistor Grain Boundaries,” Advances in Ceramics, 1: 394 (1981).Google Scholar
  11. 11.
    H. R. Philipp and L. M. Levinson, “ZnO Varistors for Protection Against Nuclear Electromagnetic Pulses,” J. Appl. Phys., 52: 1083 (1981).CrossRefGoogle Scholar
  12. 12.
    H. R. Philipp and L. M. Levinson, “Long Time Polarization Currents in Metal Oxide Varistors,” J. Appl. Phys., 47: 3111 (1976).Google Scholar
  13. 13.
    H. R. Philipp and L. M. Levinson, “High-Temperature Behavior of ZnO Based Ceramic Varistors,” J. Appl. Phys., 50: 383 (1979).CrossRefGoogle Scholar
  14. 14.
    H. R. Philipp, G. D. Mahan, and L. M. Levinson, “Advanced Metal Oxide Varistor Concepts,” Final Report ORNL/Sub/84-17457/1, under Subcontract 86X-17457C for ORNL for the DOE under Contract No. DE-AC05-840R21400 (1984).Google Scholar
  15. 15.
    J. D. Levine, “Theory of Varistor Electronic Properties,” Crit. Rev. Solid State Sci., 5: 597 (1975).CrossRefGoogle Scholar
  16. 16.
    J. Bernasconi, H. P. Klein, B. Knecht, and S. Strassler, “Investigation of Various Models for Metal Oxide Varistors,” J. Electron. Mater., 5: 473 (1976).CrossRefGoogle Scholar
  17. 17.
    W. G. Morris, “Physical Properties of the Electrical Barriers in Varistors,” J. Vac. Sci. Technol., 13: 926 (1976).CrossRefGoogle Scholar
  18. 18.
    J. Bernasconi, S. Strassler, B. Knecht, H. P. Klein, and A. Menth, “Zinc Oxide Varistors: A Possible Mechanism,” Solid State Commun., 27: 867 (1977).CrossRefGoogle Scholar
  19. 19.
    P. R. Emtage, “The Physics of Zinc Oxide Varistors,” J. Appl. Phys., 48: 4312 (1977).CrossRefGoogle Scholar
  20. 20.
    P. L. Hower and T. K. Gupta, “A Barrier Model for ZnO Varistors,” J. Appl. Phys., 50: 4847 (1979).CrossRefGoogle Scholar
  21. 21.
    G. E. Pike, S. R. Kurtz, P. L. Gourley, H. R. Philipp, and L. M. Levinson, “Electroluminescence in ZnO Varistors: Evidence for Hole Contributions to the Breakdown Mechanism,” J. Appl. Phys., 57: 5512 (1985).CrossRefGoogle Scholar
  22. 22.
    H. R. Philipp and L. M. Levinson, “Degradation Phenomena in Zinc Oxide Varistors: A Review,” Advances in Ceramics, 7: 1 (1984).Google Scholar
  23. 23.
    K. Eda, “Electrical Properties of Zn0-Bi2O3 Metal Oxide Heterojunction - A Clue of a Role of Intergranular Layers on ZnO Varistors, in Materials Research Society Symposia Proceedings: Grain Boundaries in Semiconductors,” H. J. Leaamy, G. E. Pike, and C. H. Seager, eds., Elsevier, New York (1982).Google Scholar
  24. 24.
    D. R. Clarke, “The Microstructural Location of the Intergranular Metal-Oxide Phase in a Zinc Oxide Varistor,” J. Appl. Phys., 49. 2401 (1978).CrossRefGoogle Scholar
  25. 25.
    W. G. Morris, “Electrical Properties of Zn0-Bi2O3 Ceramics,” J. Am. Ceram. Soc., 56: 360 (1973).CrossRefGoogle Scholar
  26. 26.
    G. D. Mahan, “Intrinsic Defects on ZnO Varistors,” J. Appl. Phys., 54: 3825 (1983).CrossRefGoogle Scholar
  27. 27.
    T. Miyoshi, K. Maeda, K. Takahashi, and T. Yamarzaki, “Effects of Dopants on the Characteristics of ZnO Varistors,” Advances in Ceramics 1: 309 (1981).Google Scholar
  28. 28.
    W. G. Carlson and T. K. Gupta, “Improved Varistor Nonlinearity Via Donor Impurity Doping,” J. Appl. Phys. 55: 5746 (1982).CrossRefGoogle Scholar
  29. 29.
    G. Heiland, E. Mollwo, and F. Stockmann, “Electronic Processes in Zinc Oxide, in Solid State Physics,” F. Scitz and D. Turnbull, eds., Academic, New York, 8:191 (1959).Google Scholar
  30. 30.
    P. W. Li and K. I. Hagemark, “Low Temperature Electrical Properties of Zn-Doped ZnO,” J. Solid State Chem., 12: 371 (1975).CrossRefGoogle Scholar
  31. 31.
    H. R. Philipp and L. M. Levinson, “Low-Temperature Electrical Studies on Metal Oxide Varistors - A Clue to Conduction Mechanisms,” J. Appl. Phys., 48: 1621 (1977).CrossRefGoogle Scholar
  32. 32.
    H. R. Philipp and L. M. Levinson, “Optical Method for Determining the Grain Resistivity in ZnO-Based Ceramic Varistors,” J. Appl. Phys., 47: 1112 (1976).CrossRefGoogle Scholar
  33. 33.
    D. S. McClure, “The Distribution of Transition Metal Cations in Spinels,” J. Phys. Chem.Solids, 3: 311 (1957).CrossRefGoogle Scholar
  34. 34.
    H. R. Philipp and L. M. Levinson, “Tunneling of Photoexcited Carriers in Metal Oxide Varistors,” J. Appl. Phys., 46: 3206 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Herbert R. Philipp
    • 1
  1. 1.General Electric Corporate Research and DevelopmentSchenectadyUSA

Personalised recommendations