Advertisement

Composite Piezoelectric Sensors

  • A. Safari
  • G. Sa-gong
  • J. Giniewicz
  • R. E. Newnham

Abstract

A hydrophone is an underwater microphone or transducer used to detect underwater sound. The sensitivity of a hydrophone is determined by the voltage that is produced by a hydrostatic pressure wave. The hydrostatic voltage coefficient, gh, relates the electric field appearing across a transducer to the applied hydrostatic stress, and is therefore a useful parameter for evaluating piezoelectric materials for use in hydrophones. Another piezoelectric coefficient frequently used is the hydrostatic strain coefficient, dh, which describes the polarization resulting from a change in hydrostatic stress. The gh coefficient is related to the dh coefficient by the relative permittivity (K): gh = dhoK, where ɛo is the permittivity of free space.

Keywords

Piezoelectric Property Piezoelectric Coefficient Lead Titanate Piezoelectric Composite Voltage Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Goodman, ‘Ferroelectric Properties of Lead Metaniobate,’ J. Am. Ceram. Soc. 36: 368 (1953).CrossRefGoogle Scholar
  2. 2.
    T.-Y. Tien and W.G. Carlson, ‘Effect of Additives on Properties of Lead Titanate,’ J. Am. Ceram. Soc. 45: 567 (1962).CrossRefGoogle Scholar
  3. 3.
    Y. Wada and R. Hayakawa, ‘Piezoelectricity and Pyroelectricity of Polymers,’ Japan J. Appl. Phys. 15: 2041 (1976).CrossRefGoogle Scholar
  4. 4.
    R.E. Newnham, D.P. Skinner and L.E. Cross, ‘Connectivity and Piezeoelectric-Pyroelectric Composites,’ Mat. Res. Bull. 13: 525 (1978).CrossRefGoogle Scholar
  5. 5.
    R.E. Newnham, A. Safari, J. Giniewicz and B.H. Fox, ‘Piezoelectric Sensors,’ Ferroelectrics 60: 15 (1984).CrossRefGoogle Scholar
  6. 6.
    R.E. Newnham, A. Safari, G. Sa-gong and J. Giniewicz, ‘Flexible Composite Piezoelectric Sensors,’ IEEE Ultrasonic Symposium Proceedings, 501 (1984).Google Scholar
  7. 7.
    T. Kitayama and Sugawara, ‘Flexible Piezoelectric Materials,’ Rep. Proc. Gr. Inst. Elec. Comm. Eng. Japan, CPM27-17 (1972).Google Scholar
  8. 8.
    L.A. Pauer, ‘Flexible Piezoelectric Materials,’ IEEE Int. Conf. Res., p. 1–5 (1973).Google Scholar
  9. 9.
    W.B. Harrison, ‘Flexible Piezoelectric Organic Composites,’ Proc. of the Workshop on Sonar Transducer Materials, Naval Research Labs., (Feb. 1976).Google Scholar
  10. 10.
    H. Banno and S. Saito, ‘Piezoelectric and Dielectric Properties of Composites of Synthetic Rubbers and PbTiO3 and PZT,’ Japan. J. Appl. Phys. 22: supp. 22 – 2, 67 (1983).Google Scholar
  11. 11.
    H. Banno, ‘Recent Developments of Piezoelectric Ceramic Products and Composites of Synthetic Rubber and Piezoelectric Ceramic Particles’ Ferroelectrics, 5 (1983).Google Scholar
  12. 12.
    R.Y. Ting, ‘Evaluation of New Piezoelectric Composite Materials for Hydrophone Applications,’ Ferroelectrics (to be published).Google Scholar
  13. 13.
    J. Giniewicz, ‘(Pb,Bi) (ti,Fe)O3-Polymer Comspoite Materials for Hydrophone Applications,’ M.S. Thesis, The Pennsylvania State University (1985).Google Scholar
  14. 14.
    Eccogel 1365 Series (Emerson and Cumming, Densey and Almy Chemical Division, W.R. Grace and Co.).Google Scholar
  15. 15.
    G.G. Zipfel, ‘0–3 Piezocomposite,’ Bell Labs. Record., April. 1983, p. 11–13.Google Scholar
  16. 16.
    G. So-gong, A. Safari, R.E. Newnham, ‘Easily poled 0–3 composites,’ Ferroelectrics (to be published).Google Scholar
  17. 17.
    K.A. Klicker, ‘Piezoelectric Composite with 3-1 Connectivity for Transducer Applications,’ Ph.D. Thesis, The Pennsylvania State University (1980).Google Scholar
  18. 18.
    K.A. Klicker, J.V. Biggers and R.E. Newnham, ‘Composites of PZT and Epoxy for Hydrostatic Transducer Applications,’ J. Am. Ceram. Soc. 64: 5 (1982).CrossRefGoogle Scholar
  19. 19.
    S.Y. Lynn, ‘Polymer-Piezoelectric Ceramic Composites with 3-1-0 Connectivity for Hydrophone Applications,’ M.S. Thesis, The Pennsylvania State University (1982).Google Scholar
  20. 20.
    M. Haun, ‘Transverse Reinforcement of 1-3 and 1-3-0 PZT-Polymer Piezoelectric Composites with Glass Fibers,’ M.S. Thesis, The Pennsylvania State University (1983).Google Scholar
  21. 21.
    M. Haun, P. Moses, T.R. Gururaja and W.A. Schulze, ‘Transversely Reinforced 1-3 and 1-3-0 Piezoelectric Composites,’ Ferroelectrics 49: 259 (1983).CrossRefGoogle Scholar
  22. 22.
    H.P. Savakus, K.A. Klicker and R.E. Newnham, ‘PZT-Epoxy Piezoelectric Transducers: A Simplified Fabrication Procedure,’ Mat. Res. Bull. 16: 677 (1981).CrossRefGoogle Scholar
  23. 23.
    A. Safari, R.E. Newnham and L.E. Cross, ‘Diced, Capped and Encapsulated PZT Composite,’ (applied for patent).Google Scholar
  24. 24.
    A. Halliyal, A. Safari, A.S. Bhalla, R.E. Nenwham and L.E. Cross, ‘Grain-Oriented Glass-Ceramic for Piezoelectric Devices,’ J. Am. Ceram. Soc. 67: 331 (1984).CrossRefGoogle Scholar
  25. 25.
    R.Y. Ting, A. Halliyal and A.S. Bhalla, ‘Polar Glass Ceramic For Sonar Transducers,’ J. Appl. Phys. Lett. 44: 9 (1984).CrossRefGoogle Scholar
  26. 26.
    A. Safari, Perforated PZT-Polymer Composites with 3-1 and 3-2 Connectivity for Hydrophone Applications,’ Ph.D. Thesis, The Pennsylvania State University (1983).Google Scholar
  27. 27.
    I. Kalnin and R. Hughes, ‘Preparation of Perforated PZT by Injection Molding,’ (applied for patent).Google Scholar
  28. 28.
    A. Safari, A. Halliyal, R.E. Newnham and I.M. Lachman, ‘Transverse Honeycomb Composite Transducers,’ Mat. Res. Bull. 17: 301 (1982).CrossRefGoogle Scholar
  29. 29.
    R.Y. Ting, ‘Evaluation of New Piezoelectric Composite Materials for Hydrophone Applications,’ Ferroelectrics (to be published).Google Scholar
  30. 30.
    D.P. Skinner, R.E. Newnham and L.E. Cross, ‘Flexible Composite Transducers,’ Mat. Res. Bull. 13: 599 (1978).CrossRefGoogle Scholar
  31. 31.
    K.R. Rittenmyer, T.R. Shrout and R.E. Newnham, ‘Piezoelectric 3-3 Composites,’ Ferroelectronics 41: 189 (1982).CrossRefGoogle Scholar
  32. 32.
    R.Y. Ting, ‘Evaluation of New Piezoelectric Composite Materials for Hydrophone Applications,’ Ferroelectrics (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Safari
    • 1
  • G. Sa-gong
    • 1
  • J. Giniewicz
    • 1
  • R. E. Newnham
    • 1
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations