Skip to main content

Abstract

Composite materials have found a number of structural applications but their use in the electronics industry has been relatively limited. As the advantages and disadvantages of electroceramic composites are better understood we can expect this picture to change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. van Suchtelen, Product Properties: A New Application of Composite Materials, Philips Res. Repts. 27: 28 (1972).

    Google Scholar 

  2. R.F.S. Hearmon, “Applied Anisotropic Elasticity,” Oxford University Press, London (1961) pp. 40–41.

    Google Scholar 

  3. L.K.H. van Beek, Dielectric Behaviour of Heterogeneous Systems, Prog, in Diel. 7:69 (1965).

    Google Scholar 

  4. D. A. Payne, Role of Internal Boundaries Upon the Dielectric Properties of Polycrystalline Ferroelectric Materials, Ph.D. Thesis, Pennsylvania State University (1973).

    Google Scholar 

  5. C. A. Ross and R. L. Sierakowski, Elastic Waves in Fiber Reinforced Materials, Shock and Vibration Digest 7: 1 (1975).

    Article  Google Scholar 

  6. J. van den Boomgaard, D. R. Terrell, R.A.J. Born, and H.F.J. I. Giller, An in Situ Grown Eutectic Magnetoelectric Composite Material, Part 1, J. Mat. Sci. 9: 1705 (1974).

    Article  Google Scholar 

  7. A.M.J.G. van Run, D.R. Terrell, and J.H. Scholing, An in Situ Grown Eutectic Magnetoelectric Composite Material, Part 2, J. Mat. Sci. 9: 1710 (1974).

    Article  Google Scholar 

  8. L.P.M. Bracke and R.G. van Vliet, A Broadband Magnetoelectric Transducer Using a Composite Material, Int. J. Elec. 51: 255 (1981).

    Article  CAS  Google Scholar 

  9. R. E. Newnham, D. P. Skinner, and L. E. Cross, Connectivity and Piezoelectric-Pyroelectric Composites, Mat. Res. Bull. 13: 525 (1978).

    Article  CAS  Google Scholar 

  10. R. E. Newnham, L. J. Bowen, K. A. Klicker, and L. E. Cross, Composite Piezoelectric Transducers, Mat, in Eng. 11: 93

    Google Scholar 

  11. M. J. Haun, Transverse Reinforcement of 1-3 and 1-3-0 PZT- Polymer Piezoelectric Composites with Glass Fibers, M.S. Thesis, Pennsylvania State University (1983).

    Google Scholar 

  12. A. Halliyal, A. S. Bhalla, and R. E. Newnham, Polar Glass Ceramics— A New Family of Electroceramic Materials: Tailoring the Piezoelectric and Pyroelectric Properties, Mat. Res. Bull. 18: 1007 (1983).

    Article  CAS  Google Scholar 

  13. G. O. Dayton, W. A. Schulze, T. R. Shrout, S. Swartz, and J. V. Biggers, Fabrication of Electromechanical Transducer Materials by Tape Casting, Adv. in Ceramics 9:115 (1984).

    Google Scholar 

  14. M. Granahan, M. Holmes, W. A. Schulze, and R. E. Newnham, Grain-Oriented PbNb206 Ceramics, J. Amer. Ceram. Soc. 64: C68 (1981).

    Article  CAS  Google Scholar 

  15. R. Gerson and T. C. Marshall, Dielectric Breakdown of Porous Ceramics, J. Appl. Phys. 30: 1650 (1959).

    Article  CAS  Google Scholar 

  16. I. S. Jacobs and C. P. Bean, Fine Particles, Thin Films, and Exchange Anisotropy, in: “Magnetism, Vol. Ill,” G. T. Rado and H. Suhl, ed., Academic Press, N.Y. (1963).

    Google Scholar 

  17. M. Multani, The Finite Solid State Lattice, in: “Preparation and Characterization of Materials,” J. M. Honig and C.N.R. Rao, eds., Academic Press, N.Y. (1981).

    Google Scholar 

  18. Y. Ozaki, Ultrafine Electroceramic Powder Preparation from Metal Alkoxides, Ferroelectrics 49: 285 (1983).

    Article  CAS  Google Scholar 

  19. V. A. Bokov and I. E. Myl’nikova, Electrical and Optical Properties of Single Crystals of Ferroelectrics with a Diffused Phase Transition, Sov. Phys.-Solid State 3: 613 (1961).

    Google Scholar 

  20. E. Galgoci, Ceramic-Polymer Bonding in Piezoelectric Composites, Ph.D. Thesis, Pennsylvania State University (1985).

    Google Scholar 

  21. J. Giniewicz, (Pb,Bi)(Ti,Fe)O3/Polymer 0–3 Composite Materials for Hydrophone Applications, M.S. Thesis, Pennsylvania State University (1985).

    Google Scholar 

  22. T. R. Gururaja, Piezoelectric Composite Materials for Ultrasonic Transducer Applications, Ph.D. Thesis, Pennsylvania State University (1984).

    Google Scholar 

  23. T. R. Gururaja, D. Christopher, R. E. Newnham and W. A. Schulze, Continuous Poling of PZT Fibers and Ribbons and Its Application to New Devices, Ferroelectrics 47: 193 (1983).

    Article  CAS  Google Scholar 

  24. R. E. Newnham, C. S. Miller, L. E. Cross, and T. W. Cline, Tailored Domain Patterns in Piezoelectric Crystals, Phys. Stat. Sol. 32: 69 (1975).

    Article  CAS  Google Scholar 

  25. D. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, and Y. Wang, Enhancement of Second Harmonic Generation in LiNbO3 crystals with Periodic Laminar Ferroelectric Domains, Appl. Phys. Lett. 37: 607 (1980).

    Article  CAS  Google Scholar 

  26. K. Uchino, S. Nomura, L. E. Cross, R. E. Newnham and S. J. Jang, Electrostrictive Effects in Perovskites and ITS Transducer Applications, J. Mat. Sci. 16: 569 (1981).

    Article  CAS  Google Scholar 

  27. L. E. Cross, S. J. Jang, R. E. Newnham, S. Nomura, and K. Uchino, Large Electrostriction Effects in Relaxor Ferroelectrics, Ferroelectrics 23: 187 (1980).

    Article  CAS  Google Scholar 

  28. J. F. Nye, “Physical Properties of Crystals,” Oxford University Press, London (1957).

    Google Scholar 

  29. I. M. Lachman and R. N. McNally, High Temperature Monolithic Supports for Automobile Exhaust Catalysis, Ceram. Eng. Sci. Proc. 2: 337 (1981).

    Article  CAS  Google Scholar 

  30. T. R. Shrout, L. J. Bowen, and W. A. Schulze Extruded PZT/Polymer Composites for Electromechanical Transducer Applications, Mat. Res. Bull. 15: 1371 (1980).

    Google Scholar 

  31. A. Safari, A. Halliyal, R. E. Newnham, and I. Lachman, Transverse Honeycomb Composite Transducers, Mat. Res. Bull. 17: 301 (1982)

    Article  CAS  Google Scholar 

  32. I. S. Zheludev, Piezoelectricity in Textured Media, Solid State Physics 29: 315 (1974).

    Article  Google Scholar 

  33. G. J. Gardopee, R. E. Newnham, and A. S. Bhalla, Pyroelectric Li2Si2O5 Glass-Ceramics. Ferroelectrics 33: 155 (1981).

    Article  CAS  Google Scholar 

  34. S. K. Bhattacharya and A.C.D. Chaklader, Review on Metal-Filled Plastics. Part 1. Electrical Conductivity, Polym.-Plast. Tech. Eng. 19: 21 (1982).

    Article  CAS  Google Scholar 

  35. R. D. Sherman, L. M. Middleman, and S. M. Jacobs, Electron Transport Processes in Conductor-Filled Polymers, Polymer Eng. and Sci. 23: 36 (1983).

    Article  Google Scholar 

  36. K. A. Hu, R. E. Newnham, J. P. Runt, and A. Safari (in preparation).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Newnham, R.E. (1986). Electroceramic Composites. In: Tressler, R.E., Messing, G.L., Pantano, C.G., Newnham, R.E. (eds) Tailoring Multiphase and Composite Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2233-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2233-7_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9309-5

  • Online ISBN: 978-1-4613-2233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics