Skip to main content

Displacive Transformation Mechanisms in Zirconia Ceramics and Other Non-Metals

  • Chapter
Book cover Tailoring Multiphase and Composite Ceramics

Abstract

Phase transformation mechanisms in a variety of non-metals can be studied from the point of view of structural aspects and nucleation, and compared with metallurgical classification schemes.(1–3) In a “reconstructive” transformation first coordination bonds or nearest-neighbor interactions are broken and remade when converting to a new structure. Such processes require a high activation energy and are usually slow and sluggish. They proceed by thermally-activated growth across an interface. “Displacive” transformations on the other hand, involve no rupture of first cordinations, but merely a distortion of the crystal lattice. The activation energy is much lower and the kinetics are fast. Displacive transformations are not necessarily martensitic. This has been a frequent source of confusion, evident in the literature. Martensitic transformations are a subset of displacive transformations.(2) A martensitic mechanism is a “lattice-distortive, virtually diffusionless structure change having a dominant deviatoric component and associated shape change, such that strain energy dominates the kinetics and morphology during the transformation.”(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Christian, Theory of Transformations in Metals and Alloys, Pergamon Press 2nd Edit. (1975).

    Google Scholar 

  2. M. Cohen, G.B. Olson and P.C. Clapp, pp. 1–11 Proc. Int. Conf. Martensitic Transformations, (ICOMAT), M.I.T., (1979).

    Google Scholar 

  3. M. Cohen and C.M. Wayman in Treatises in Metallurgy, ed. J.K. Tien and J.F. Elliott, (1981).

    Google Scholar 

  4. R.E. Newnham, Crystal Chemistry of Non-Metallic Materials, Springer-Verlag (1975).

    Google Scholar 

  5. W.M. Kriven, “Shear Transformations in Inorganic Materials” (Review), pp. 1507–32 Proc. An Int. Conf. on Solid–Solid Phase Transformations, Edited H.I. Aaronson, D.E. Laughlin, R.F. Sekerka and C.M. Wayman, Pittsburgh, (1982).

    Google Scholar 

  6. H.D. Megaw, pp. 86–89 Crystal Structures: A Working Approach, W.B. Saunders Publ. London (1973).

    Google Scholar 

  7. Proc. First Int. Conf. on Science and Technology of Zirconia, Advances in Ceramics, Vol. Edited by A.H. Heuer and L.W. Hobbs. The American Ceramic Society, Columbus, OH, (1981).

    Google Scholar 

  8. A.H. Heuer, N. Claussen, W.M. Kriven and M. Rühle, J. Am. Ceram. Soc. 65 [12] 642–650 (1982).

    Article  CAS  Google Scholar 

  9. M. Rühle and W.M. Kriven, Ber. Bunsenges. Phys. Chem. 87, 222–228 (1983).

    Google Scholar 

  10. A.G. Evans, pp. 193–212 in Advances in Ceramics, Vol 12, edited by N. Claussen, M. Rühle and A.H. Heuer. The American Ceramic Soc., Columbus, 0H, (1984).

    Google Scholar 

  11. W.M. Kriven, pp. 64–77 in Advances in Ceramics, Vol. 12, Edited by N. Claussen, M. Rühle and A.H. Heuer. The American Ceramic Soc., Columbus, 0H, (1984).

    Google Scholar 

  12. W. Mader, W.M. Kriven and M. Rühle, to be published.

    Google Scholar 

  13. W.M. Kriven, W.L. Fraser and S.W. Kennedy, pp. 82–97 in Advances in Ceramics, Vol. J3, edited by A. H. Heuer and L.W. Hobbs. The American Ceramic Society, Columbus, 0H, (1981).

    Google Scholar 

  14. A.G. Evans, N. Burlingame, M. Drory and W.M. Kriven, Acta Metall. 29, 447–56 (1981).

    Article  CAS  Google Scholar 

  15. M. Rühle and W.M. Kriven, pp. 1569–1573 in Proc. An. Int. Conf. on Solid -,, Solid Phase Transformations, edited by H.I. Aaronson, D.E. Laughlin, R.F. Sekerka and C.M. Wayman, AIME, Pittsburgh, (1982).

    Google Scholar 

  16. M.A. Choudhry and A.G. Crocker, pp. 46–53 in Advances in Ceramics, Vol. 12, edited by N. Claussen, M. Rühle and A.H. Heuer. The American Ceramic Soc., Columbus, OH, (1984).

    Google Scholar 

  17. W.M. Kriven, pp. 168–83 in Advances in Ceramics, Vol. 3, edited by A.H. Heuer and L.W. Hobbs. The American Ceramic Soc., Columbus, 0H, (1981).

    Google Scholar 

  18. E. Bischoff and M. Rühle, J. Am. Ceramic Soc. 66 [2] 123–27 (1983).

    Article  CAS  Google Scholar 

  19. P.M. Kelly and C. J. Ball, J. Am. Ceram. Soc. (1985), in press.

    Google Scholar 

  20. M. Rühle and A.H. Heuer, pp. 14–32 in Advances in Ceramics, Vol. 12, edited by N. Claussen, M. Rühle and A.H. Heuer. The American Ceramic Soc., Columbus, 0H, (1984).

    Google Scholar 

  21. First proposed by A. G. Evans in Ref. 5.

    Google Scholar 

  22. M.J. Bevis and P.S. Allen, (Review) Sur. Defect Prop. Solids 3, 93– 131, (1974).

    Google Scholar 

  23. F.C. Frank, A. Keller and A. O’Connor, Philos. Mag. 3, 64–73 (1958).

    Article  CAS  Google Scholar 

  24. P. Allan, E.B. Crellin and M. Bevis, Philos. Mag. 27, 127–145 (1973).

    Article  CAS  Google Scholar 

  25. P. Allan and M. Bevis, Proc. Roy. Soc. London A 341, 75–90 (1974).

    Article  CAS  Google Scholar 

  26. P. Allan and M. Bevis, Philos. Mag. 31 [5], 1001–9 (1975).

    Article  CAS  Google Scholar 

  27. A.F. Acton, M. Bevis, A.G. Crocker and N.D.H. Ross, Proc. Roy. Soc. London A 320, 101–113 (1970).

    Article  Google Scholar 

  28. M. Bevis and E.B. Crellin, Polymer 12, 666–684 (1971).

    Article  CAS  Google Scholar 

  29. R.S. Coe, Contrib. Mineral, and Petrol. 26 247–264 (1970).

    Article  CAS  Google Scholar 

  30. H. Thumauer and A.R. Rodriguez, J. Am. Ceram. Soc. 25, [15], 443– 450 (1942).

    Article  Google Scholar 

  31. M.D. Rigterink, J. Am. Ceram. Soc. 30 [7], 214–218 (1947).

    Article  CAS  Google Scholar 

  32. E.C. Bloor, J. British Ceramic Soc. (1964), [1–2], 309–316.

    Google Scholar 

  33. R.S. Coe and W.F. Müller, Science 180, 64–66 (1973).

    Article  CAS  Google Scholar 

  34. B.H. Mussler, unpublished work (1984).

    Google Scholar 

  35. J.F. Sarver and F. H. Hummel, J. Am. Ceram. Soc. 45, [4], 152–156 (1962).

    Article  CAS  Google Scholar 

  36. R.E. Riecker and T. P. Rooney, Geol. Soc. Amer. Bulletin, 78, 1045– 1054, (1967).

    Google Scholar 

  37. C.B. Raleigh, S. H. Kirby, N. L. Carter and H. G. Ave Lallemant, J. Geophy. Reasearch 76, [17], 4011–4022 (1971).

    Article  CAS  Google Scholar 

  38. R.S. Coe and S. K. Kirby, Contrib. Mineral. Petrol 52, 29–55 (1975).

    Article  CAS  Google Scholar 

  39. S.H. Kirby, in Electron Microscopy in Mineralogy, Edited by H. R. Wenk, Springer Verlag, 465–472 (1976).

    Google Scholar 

  40. G.Kullerud and R.A. Yund, G. Petrol. 3, 126–175 (1962).

    CAS  Google Scholar 

  41. L. Merker, Glastechn. Ber. 47, [6] 116–121 (1974).

    CAS  Google Scholar 

  42. E.R. Ballantyne, C.S.I.R.O. Division of Building Research, Melbourne, Australia, Report 061–5 (1961).

    Google Scholar 

  43. M.V. Swain, J. Mater Sci. 16, 151–158 (1981).

    Article  CAS  Google Scholar 

  44. C.C. Hsiao, Fracture 1977, 3, ICF4, Waterloo, Canada, 985–989 (1977).

    Google Scholar 

  45. R. Wagner, Glastechn. Ber. 50, [11], 296–300 (1977).

    CAS  Google Scholar 

  46. E.M. Levin, R.S. Roth, J.B. Martin, Amer. Mineral 46, 1030–1055 (1961).

    CAS  Google Scholar 

  47. H.E.Schwiete, W. Kronert and K. Deckert, Zement, Kalk, Gips 9 (in German) 359–366 (1968).

    Google Scholar 

  48. A.Guinier and M.Regourd, Principal Paper I, V-ISCC Tokyo (1968), 1, 1–41 (1969).

    Google Scholar 

  49. M. Regourd and A. Guinier, Principal Paper I, Proc. VI Int. Congr. Chemistry of Cement, held in Moscow 1–82 (1974).

    Google Scholar 

  50. H. Midgley, ibid, Suppl. Paper, Sect I, 4–14 (1974).

    Google Scholar 

  51. S.N. Ghosh, P. Bhaskara Rav, A.K. Paul and K. Raina, J. Mater. Sci 14, 1554–1566 (1979).

    Article  CAS  Google Scholar 

  52. J.W. Groves, J. Mater. Sci 16, 1063–1070 (1981).

    Article  CAS  Google Scholar 

  53. J.W. Groves, J. Mater. Sci. 18, 1615–24 (1983).

    Article  CAS  Google Scholar 

  54. J.W. Groves, Cement and Concrete Research 12, 619–624 (1982).

    Article  CAS  Google Scholar 

  55. J.S. Moya, P. Pena and S. de Aza, J. Am. Ceram. Soc. 68 [9], C259– 262 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kriven, W.M. (1986). Displacive Transformation Mechanisms in Zirconia Ceramics and Other Non-Metals. In: Tressler, R.E., Messing, G.L., Pantano, C.G., Newnham, R.E. (eds) Tailoring Multiphase and Composite Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2233-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2233-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9309-5

  • Online ISBN: 978-1-4613-2233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics