Advertisement

Displacive Transformation Mechanisms in Zirconia Ceramics and Other Non-Metals

  • W. M. Kriven

Abstract

Phase transformation mechanisms in a variety of non-metals can be studied from the point of view of structural aspects and nucleation, and compared with metallurgical classification schemes.(1–3) In a “reconstructive” transformation first coordination bonds or nearest-neighbor interactions are broken and remade when converting to a new structure. Such processes require a high activation energy and are usually slow and sluggish. They proceed by thermally-activated growth across an interface. “Displacive” transformations on the other hand, involve no rupture of first cordinations, but merely a distortion of the crystal lattice. The activation energy is much lower and the kinetics are fast. Displacive transformations are not necessarily martensitic. This has been a frequent source of confusion, evident in the literature. Martensitic transformations are a subset of displacive transformations.(2) A martensitic mechanism is a “lattice-distortive, virtually diffusionless structure change having a dominant deviatoric component and associated shape change, such that strain energy dominates the kinetics and morphology during the transformation.”(2)

Keywords

Habit Plane Chain Axis DICALCIUM Silicate Nucleation Barrier Martensitic Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Christian, Theory of Transformations in Metals and Alloys, Pergamon Press 2nd Edit. (1975).Google Scholar
  2. 2.
    M. Cohen, G.B. Olson and P.C. Clapp, pp. 1–11 Proc. Int. Conf. Martensitic Transformations, (ICOMAT), M.I.T., (1979).Google Scholar
  3. 3.
    M. Cohen and C.M. Wayman in Treatises in Metallurgy, ed. J.K. Tien and J.F. Elliott, (1981).Google Scholar
  4. 4.
    R.E. Newnham, Crystal Chemistry of Non-Metallic Materials, Springer-Verlag (1975).Google Scholar
  5. 5.
    W.M. Kriven, “Shear Transformations in Inorganic Materials” (Review), pp. 1507–32 Proc. An Int. Conf. on Solid–Solid Phase Transformations, Edited H.I. Aaronson, D.E. Laughlin, R.F. Sekerka and C.M. Wayman, Pittsburgh, (1982).Google Scholar
  6. 6.
    H.D. Megaw, pp. 86–89 Crystal Structures: A Working Approach, W.B. Saunders Publ. London (1973).Google Scholar
  7. 7.
    Proc. First Int. Conf. on Science and Technology of Zirconia, Advances in Ceramics, Vol. Edited by A.H. Heuer and L.W. Hobbs. The American Ceramic Society, Columbus, OH, (1981).Google Scholar
  8. 8.
    A.H. Heuer, N. Claussen, W.M. Kriven and M. Rühle, J. Am. Ceram. Soc. 65 [12] 642–650 (1982).CrossRefGoogle Scholar
  9. 9.
    M. Rühle and W.M. Kriven, Ber. Bunsenges. Phys. Chem. 87, 222–228 (1983).Google Scholar
  10. 10.
    A.G. Evans, pp. 193–212 in Advances in Ceramics, Vol 12, edited by N. Claussen, M. Rühle and A.H. Heuer. The American Ceramic Soc., Columbus, 0H, (1984).Google Scholar
  11. 11.
    W.M. Kriven, pp. 64–77 in Advances in Ceramics, Vol. 12, Edited by N. Claussen, M. Rühle and A.H. Heuer. The American Ceramic Soc., Columbus, 0H, (1984).Google Scholar
  12. 12.
    W. Mader, W.M. Kriven and M. Rühle, to be published.Google Scholar
  13. 13.
    W.M. Kriven, W.L. Fraser and S.W. Kennedy, pp. 82–97 in Advances in Ceramics, Vol. J3, edited by A. H. Heuer and L.W. Hobbs. The American Ceramic Society, Columbus, 0H, (1981).Google Scholar
  14. 14.
    A.G. Evans, N. Burlingame, M. Drory and W.M. Kriven, Acta Metall. 29, 447–56 (1981).CrossRefGoogle Scholar
  15. 15.
    M. Rühle and W.M. Kriven, pp. 1569–1573 in Proc. An. Int. Conf. on Solid -,, Solid Phase Transformations, edited by H.I. Aaronson, D.E. Laughlin, R.F. Sekerka and C.M. Wayman, AIME, Pittsburgh, (1982).Google Scholar
  16. 16.
    M.A. Choudhry and A.G. Crocker, pp. 46–53 in Advances in Ceramics, Vol. 12, edited by N. Claussen, M. Rühle and A.H. Heuer. The American Ceramic Soc., Columbus, OH, (1984).Google Scholar
  17. 17.
    W.M. Kriven, pp. 168–83 in Advances in Ceramics, Vol. 3, edited by A.H. Heuer and L.W. Hobbs. The American Ceramic Soc., Columbus, 0H, (1981).Google Scholar
  18. 18.
    E. Bischoff and M. Rühle, J. Am. Ceramic Soc. 66 [2] 123–27 (1983).CrossRefGoogle Scholar
  19. 19.
    P.M. Kelly and C. J. Ball, J. Am. Ceram. Soc. (1985), in press.Google Scholar
  20. 20.
    M. Rühle and A.H. Heuer, pp. 14–32 in Advances in Ceramics, Vol. 12, edited by N. Claussen, M. Rühle and A.H. Heuer. The American Ceramic Soc., Columbus, 0H, (1984).Google Scholar
  21. 21.
    First proposed by A. G. Evans in Ref. 5.Google Scholar
  22. 22.
    M.J. Bevis and P.S. Allen, (Review) Sur. Defect Prop. Solids 3, 93– 131, (1974).Google Scholar
  23. 23.
    F.C. Frank, A. Keller and A. O’Connor, Philos. Mag. 3, 64–73 (1958).CrossRefGoogle Scholar
  24. 24.
    P. Allan, E.B. Crellin and M. Bevis, Philos. Mag. 27, 127–145 (1973).CrossRefGoogle Scholar
  25. 25.
    P. Allan and M. Bevis, Proc. Roy. Soc. London A 341, 75–90 (1974).CrossRefGoogle Scholar
  26. 26.
    P. Allan and M. Bevis, Philos. Mag. 31 [5], 1001–9 (1975).CrossRefGoogle Scholar
  27. 27.
    A.F. Acton, M. Bevis, A.G. Crocker and N.D.H. Ross, Proc. Roy. Soc. London A 320, 101–113 (1970).CrossRefGoogle Scholar
  28. 28.
    M. Bevis and E.B. Crellin, Polymer 12, 666–684 (1971).CrossRefGoogle Scholar
  29. 29.
    R.S. Coe, Contrib. Mineral, and Petrol. 26 247–264 (1970).CrossRefGoogle Scholar
  30. 30.
    H. Thumauer and A.R. Rodriguez, J. Am. Ceram. Soc. 25, [15], 443– 450 (1942).CrossRefGoogle Scholar
  31. 31.
    M.D. Rigterink, J. Am. Ceram. Soc. 30 [7], 214–218 (1947).CrossRefGoogle Scholar
  32. 32.
    E.C. Bloor, J. British Ceramic Soc. (1964), [1–2], 309–316.Google Scholar
  33. 33.
    R.S. Coe and W.F. Müller, Science 180, 64–66 (1973).CrossRefGoogle Scholar
  34. 34.
    B.H. Mussler, unpublished work (1984).Google Scholar
  35. 35.
    J.F. Sarver and F. H. Hummel, J. Am. Ceram. Soc. 45, [4], 152–156 (1962).CrossRefGoogle Scholar
  36. 36.
    R.E. Riecker and T. P. Rooney, Geol. Soc. Amer. Bulletin, 78, 1045– 1054, (1967).Google Scholar
  37. 37.
    C.B. Raleigh, S. H. Kirby, N. L. Carter and H. G. Ave Lallemant, J. Geophy. Reasearch 76, [17], 4011–4022 (1971).CrossRefGoogle Scholar
  38. 38.
    R.S. Coe and S. K. Kirby, Contrib. Mineral. Petrol 52, 29–55 (1975).CrossRefGoogle Scholar
  39. 39.
    S.H. Kirby, in Electron Microscopy in Mineralogy, Edited by H. R. Wenk, Springer Verlag, 465–472 (1976).Google Scholar
  40. 40.
    G.Kullerud and R.A. Yund, G. Petrol. 3, 126–175 (1962).Google Scholar
  41. 41.
    L. Merker, Glastechn. Ber. 47, [6] 116–121 (1974).Google Scholar
  42. 42.
    E.R. Ballantyne, C.S.I.R.O. Division of Building Research, Melbourne, Australia, Report 061–5 (1961).Google Scholar
  43. 43.
    M.V. Swain, J. Mater Sci. 16, 151–158 (1981).CrossRefGoogle Scholar
  44. 44.
    C.C. Hsiao, Fracture 1977, 3, ICF4, Waterloo, Canada, 985–989 (1977).Google Scholar
  45. 45.
    R. Wagner, Glastechn. Ber. 50, [11], 296–300 (1977).Google Scholar
  46. 46.
    E.M. Levin, R.S. Roth, J.B. Martin, Amer. Mineral 46, 1030–1055 (1961).Google Scholar
  47. 47.
    H.E.Schwiete, W. Kronert and K. Deckert, Zement, Kalk, Gips 9 (in German) 359–366 (1968).Google Scholar
  48. 48.
    A.Guinier and M.Regourd, Principal Paper I, V-ISCC Tokyo (1968), 1, 1–41 (1969).Google Scholar
  49. 49.
    M. Regourd and A. Guinier, Principal Paper I, Proc. VI Int. Congr. Chemistry of Cement, held in Moscow 1–82 (1974).Google Scholar
  50. 50.
    H. Midgley, ibid, Suppl. Paper, Sect I, 4–14 (1974).Google Scholar
  51. 51.
    S.N. Ghosh, P. Bhaskara Rav, A.K. Paul and K. Raina, J. Mater. Sci 14, 1554–1566 (1979).CrossRefGoogle Scholar
  52. 52.
    J.W. Groves, J. Mater. Sci 16, 1063–1070 (1981).CrossRefGoogle Scholar
  53. 53.
    J.W. Groves, J. Mater. Sci. 18, 1615–24 (1983).CrossRefGoogle Scholar
  54. 54.
    J.W. Groves, Cement and Concrete Research 12, 619–624 (1982).CrossRefGoogle Scholar
  55. 55.
    J.S. Moya, P. Pena and S. de Aza, J. Am. Ceram. Soc. 68 [9], C259– 262 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • W. M. Kriven
    • 1
    • 2
  1. 1.Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Ceramic EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations