Quantitative Microstructural Characterization and Description of Multiphase Ceramics

  • R. T. DeHoff


The microstructural state possessed by a material is the legacy of its history, the key to its properties, and the portent of its response to subsequent processing. Thus, a knowledge of this microstructural state plays a central role in developing an understanding of how a material behaves. In a broad sense, the concept contained in “microstructural state” may imply a hierarchy of aspects of the structure of the material (electronic, crystal, defect, phases) and a range of attributes of its structural elements (chemical. physical , mechanical , thermodynamical).


Topological Property Feature Class Triple Line Microstructural State Interphase Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.T. DeHoff and F.N. Rhines, “Quantiative Microscopy,” McGraw-Hill Book Co., Inc., New York, NY (1968).Google Scholar
  2. 2.
    E.E. Underwood, “Quantitative Stereology,” Addison-Wesley Press, Reading,MA (1970).Google Scholar
  3. 3.
    J. Serra, “Image Analysis and Mathematical Morphometry”, Academic Press, New York, NY (1981).Google Scholar
  4. 4.
    R.T. DeHoff, “Topography of Microstructures”, Metallography, 8: 71 (1971)CrossRefGoogle Scholar
  5. 5.
    R.T. DeHoff, E.H. Aige1tinger and K.R. Craig, “Experimental determination of the topological properties of microstructures”, Journal of Microscopy. 95,pt. 1: 69 (1972).CrossRefGoogle Scholar
  6. 6.
    E.H. Aigeltinger and R.T. DeHoff, Quantitative determination of the topological and metric properties during sintering of copper powder, Metallurgical Transactions. 6A: 1853 (1975).CrossRefGoogle Scholar
  7. 7.
    R.T. DeHoff and S.M. Gehl, “Stereology of space curves”, in “Proc. Fourth International Congress for Stereology,” R. DeWit and G.M. Moore, ed., National Bureau of Standards Special Publication No. 431, U.S. Government Printing Office, Washington, DC (1975) p. 29.Google Scholar
  8. 8.
    R.T. DeHoff, “Geometrical meaning of the integral mean surface curvature”, in “Microstructural Science, Vol. 5”. J.L. McCall, ed., Elsevier-North Holland Press, New York, NY ( 1977), p. 331.Google Scholar
  9. 9.
    R.T. DeHoff, “Integral mean curvature and platelet growth”, Met. Trans. 10A: 1948 (1979).CrossRefGoogle Scholar
  10. 10.
    R.T. DeHoff, “Stereologica1 meaning of the inflection point count”, Journal of Microscopy, 121: 13 (1981).CrossRefGoogle Scholar
  11. 11.
    S.D. Wicksell, “The corpuscle problem II: case of ellipsoid corpuscles”, Biometrika. 18: 151 (1926).Google Scholar
  12. 12.
    E. Schiel and H. Wurst, “Statische Gefugeuntersuchengen II: Messung der raumlichen Kristal 1 grosse”, Z.Metallk. 28:340 ( 1936) .Google Scholar
  13. 13.
    W.A. Johnson, “Estimation of spatial grain size”, Met. Prog.. 49: 87 (1946).Google Scholar
  14. 14.
    J.W. Cahn and R.L. Fullman, “On the use of lineal analysis for obtaining particles size distribution functions in opaque samples”, Trans. AIME. 206: 610 (1956).Google Scholar
  15. 15.
    S.A. Saltykov, “The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections”, in “Stereology”, H. Elias, ed., Springer-Verlag, New York, NY (1967) p. 167.Google Scholar
  16. 16.
    R.T. DeHoff, “The estimation of particle size distributions from simple counting measurements made on random plane sections”, Trans.AIME. 233: 25 (1965).Google Scholar
  17. 17.
    E.E. Underwood, “Quantitative Stereology”. Addison-Wes1ey Pub. Co. Reading, MA (1970) Chapter 4.Google Scholar
  18. 18.
    R.S. Anderssen and A. J. Jakeman, “Abel type integral equations in stereology II: computational methods of solution and the random spheres approximation”, Journal of Microscopy. 105: 135 (1975).CrossRefGoogle Scholar
  19. 19.
    R.S. Anderssen and A.J. Jakeman, “Stable procedures for the inversion of Abel’s equation”, Jn1.Inst.Maths.Appl ics. 17: 329 (1976).CrossRefGoogle Scholar
  20. 20.
    J.E. Hi11iard, “Specification and measurement of micro- structural anisotropy”, Trans.AIME. 224: 1201 (1962).Google Scholar
  21. 21.
    S.A. Saltykov, “Stereometric Metal1ography”,second edition, Metal 1 urgizdat, Moscow ( 1958 ).Google Scholar
  22. 22.
    E.E. Underwood “Quantitative Stereology”, Addison-Wesley Pub. Co., Reading, MA (1970) Chapter 3.Google Scholar
  23. 23.
    B.R. Patterson and R.T. DeHoff, “Measurement of lineal features of anisotropic microstructures: the Saltykov and tetrakiadecahedron models”, in “Microstruetural Science, Vol. 7”, J.L. McCall ed., Elsevier North Holland, New York, NY (1979) p. 445.Google Scholar
  24. 24.
    W.J. Whitehouse, “The quantitative morphometry of anisotropic trabecular bone”, Journal of Micorscopy. 101,pt2:153 ( 1974) .CrossRefGoogle Scholar
  25. 25.
    T.P. Harrigan and R.W. Mann, “Characterization of micro- structural anisotropy in orthotropic materials using a second rank tensor”, Jnl.Mats.Sci. 19:761 ( 1984 ).CrossRefGoogle Scholar
  26. 26.
    J. Gurland, “The measurement of grain contiguity in two phase alloys”, Trans AIME. 212: 452 (1958).Google Scholar
  27. 27.
    J.W. Cahn and J.E. Hi11iard, The measurement of grain contiguity in opaque samples, Trans. AIME. 215: 759 (1959).Google Scholar
  28. 28.
    D.A. Aboav,”The arrangement of cells in a net, III, Metallography. 17: 383 (1985).CrossRefGoogle Scholar
  29. 29.
    R.T. DeHoff, “Quantitative serial sectioning anlaysis: preview”, Journal of Microscopy. 131: 259 (1983).CrossRefGoogle Scholar
  30. 30.
    M. Yanuka, F.A.L. Dul1ten and D.E. Elrick, “Serial sectioning and digitization of porous media for two and three dimensional analysis and reconstruction”, Journal of Microscopy. 135: 159 (1984).CrossRefGoogle Scholar
  31. 31.
    R.T. DeHoff, Dynamics of microstructural change, in “Treatise on Materials Science and Technology, Vol.1,” H. Herman, ed., Academic Press, New York, NY (1972) p. 247.Google Scholar
  32. 32.
    R.T. DeHoff, “Stereology and metallurgy”, Metals Forum. 5: 4 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. T. DeHoff
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations