Skip to main content
  • 41 Accesses

Abstract

Since the early 1970’s, interest in fibronectin has increased steadily, and there is now a massive literature on the structure and functional attributes of this complex molecule (see reviews 1–3)o Although its absence or depletion from the surface of transformed cells first brought fibronectin to the attention of those interested in tumour formation and invasion,the fact that it has significant roles to play in the adhesion and migration of normal cells has widened the field to include connective tissue, developmental biology and more recently molecular biology. Fibronectin is now the most studied of all connective tissue components and two major attributes make this glycoprotein of particular interest. Firstly, the glycoprotein has the capacity to bind other connective tissue components and cell surfaces through a series of domains joined by more flexible regions1 (Fig. l). The implication of this is that fibronectin is ideally suited for a role in mediating cell attachment (whether eukaryotic or prokar- yotic) to collagenous extracellular matrices. Secondly, the molecule is widespread in vivo, deposited in connective tissues and basement membranes and present in a soluble form in many body fluids including plasma, cerebrospinal and amniotic fluids.1–3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.M. Yamada, Cell surface interactions with extracellular materials, Ann. Rev. Biochem 52:761 (1983).

    Article  Google Scholar 

  2. D.F. Mosher, Physiology of fibronectin, Ann. Rev. Med. 35:561 (1984).

    Article  Google Scholar 

  3. R.O. Hynes, Fibronectin and its relation to cellular structure and behavior, in. “Cell Biology of Extracellular Matrix”, E.D. Hay, ed., Plenum Press, New York (1981).

    Google Scholar 

  4. A. Vaheri and D.F. Mosher, High molecular weight cell surface- associated glycoprotein (fibronectin) lost in malignant transformation, Biochim. Biophys. Acta 516:1 (1978).

    Google Scholar 

  5. R.O. Hynes and K.M. Yamada, Fibronectins: Multi-functional modular glycoproteins, J. Cell Biol. 95:369 (1982).

    Article  Google Scholar 

  6. E. Engvall, E. Ruoslahti, and E.J. Miller, Affinity of fibronectin to collagens of different genetic types and to fibrinogen, J. Exp. Med. 147:1584 (1978).

    Article  Google Scholar 

  7. F. Jilek and Hc Hormann, Cold-insoluble globulin (fibronectin) IV. Affinity to soluble collagen of various types, Hoppe- Seylerls Z. Physiol. Chem. 359:247 (1978).

    Google Scholar 

  8. L.I. Gold, B. Frangione, and E. Pearlstein, Biochemical and immunological characterization of three binding sites on human plasma fibronectin with different affinities for heparin, Biochemistry 22:4113 (1983).

    Article  Google Scholar 

  9. I.V. Ali and R.O. Hynes, Effects of LETS glycoprotein on cell motility, Cell 14:439 (1978).

    Article  Google Scholar 

  10. J.R. Couchman, D.A. Rees, M.R. Green, and C.G. Smith, Fibronectin has a dual role in locomotion and anchorage of primary chick fibroblasts and can promote entry into the division cycle, J. Cell Biol. 93:402 (1982).

    Article  Google Scholar 

  11. G. Froman, L. Switalski, A. Faris, T. Wadstrom, and M. Hook, Binding of E© coli to fibronectin - A mechanism of tissue adherence, J. Biol. Chem. In Press (1985).

    Google Scholar 

  12. S.K. Akiyama and M.D. Johnson, Fibronectin in evolution: Presence in invertebrates and isolation from Microciona prolifera, Comp. Biochem. Physiol. B. 76:687 (1983).

    Article  Google Scholar 

  13. J.E. Schwarzbauer, J.W. Tamkun, I.R. Lemischka, and R.O, Hynes, Three different fibronectin mRNAs arise by alternative splicing within the coding region, Cell 35:421 (1983).

    Article  Google Scholar 

  14. A.R. Kornblihtt, K. Vibe-Pedersen, and F.E. Baralle, Human fibronectin: molecular cloning evidence for two mRNA species differing by an internal segment coding for a structural domain, EMBO J. 3:221 (1984).

    Google Scholar 

  15. J.W. Tamkun, J.E. Schwarzbauer, and R.O. Hynes, A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon, Proc. Natl. Acad. Sci. U.S.A. 81:5140 (1984).

    Article  Google Scholar 

  16. K. Sekiguchi and S. Hakomori, Functional domain structure of fibronectin, Proc. Natl. Acad. Sci. U.S.A. 77:2661 (1980).

    Article  Google Scholar 

  17. J.R. Couchman, M. Hook, D.A. Rees, and R. Timpl, Adhesion, growth and matrix production by fibroblasts on laminin substrates, J. Cell Biol, 96:177 (1983).

    Article  Google Scholar 

  18. D.M. Scott, J.C. Murray, and M.J. Barnes, Investigation of the attachment of bovine corneal endothelial cells to coll- agens and other components of the subendothelium, Exp. Cell Res, 144:472 (1983).

    Article  Google Scholar 

  19. M. Hook, K. Rubin, A. Oldberg, B. Obrink, and A. Vaheri, Cold-insoluble globulin mediates the adhesion of rat liver cells to plastic petri dishes, Biochem. Biophys. Res. Commun. 79:726 (1977).

    Article  Google Scholar 

  20. R.A. Badley, J.R. Couchman, and D.A. Rees, Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts, J. Muscle Res. Cell Motility 1:5 (1980).

    Article  Google Scholar 

  21. J.R. Couchman, M. Lenn, and D.A. Rees, Coupling of cytoskeleton functions for fibroblast locomotion, Eur. J. Cell Biol. In Press (1985).

    Google Scholar 

  22. R.J. Beyth and L.A. Culp, Complementary adhesive responses of human skin fibroblasts to the cell-binding domain of fibronectin and the heparan sulfate-binding protein, platelet factor-4, Exp. Cell Res. 155:537 (1984).

    Article  Google Scholar 

  23. J.E. Doran, A.R. Mansberger, and A.C. Pease, Cold-insoluble globulin-enhanced phagocytosis of gelatinized targets by macrophage monolayers: A model system, J. Retic. Soc. 27:471 (1980).

    Google Scholar 

  24. F.A. Blumenstock, T.M. Saba, P. Weber, and R. Laffin, Biochemical and immunological characterization of human opsonic «2 SB glycoprotein: Its identity with cold- insoluble globulin, J. Biol. Chem. 253:4287 (1978).

    Google Scholar 

  25. F. Jilek and H. Hormann, Cold-insoluble globulin. III. Cyanogen bromide and plasminolysis fragments containing a label introduced by transamidation, Hoppe-Seyler’s Z. Physiol. Chem. 358:1165 (1977).

    Google Scholar 

  26. A.B. Robbins, J.E. Doran, A.C. Reese, A.R. Mansberger, Cold-insoluble globulin levels in operative trauma: serum depletion, wound sequestration and biological activity: an experimental and clinical study, Am. Surg. 46:663 (1980).

    Google Scholar 

  27. R.A.F. Clark, H.J. Winn, H.F. Dvorak, and R.P. Colvin, Fibronectin beneath reepithelializing epidermis in vivo; sources and significance, J. Invest. Dermatol. 80:265 (1983).

    Article  Google Scholar 

  28. R.A.F. Clark, P. DellaPelle, E. Manseau, J.M. Lanigan, H.F. Dvorak, and R.Bo Colvin, Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing, J. Invest. Dermatol. 79:269 (1982).

    Article  Google Scholar 

  29. J.R. Couchman, W.T. Gibson, Do Thorn, A.C. Weaver, D.A. Rees, and W.E. Parish, Fibronectin distribution in epithelial and associated tissues of the rat. Arch. Dermatol. Res, 266:295 (1979).

    Article  Google Scholar 

  30. W.T. Gibson, J.R. Couchman, and A.C. Weaver, Fibronectin distribution during the development of fetal rat skin, J. Invest, Dermatol, 8l:480 (1983).

    Article  Google Scholar 

  31. D.R. Critchley, M.A. England, J. Wakely, and R.O. Hynes, Distribution of fibronectin in the ectoderm of gastrul- ating embryos, Nature, Lond. 280:498 (1979)«.

    Article  Google Scholar 

  32. B.W. Mayer, E.D. Hay, and R.O. Hynes, Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosa, Dev. Biol, 82:267 (l98l).

    Article  Google Scholar 

  33. J. Heasman, R.O. Hynes, A.P. Swan, V, Thomas, and C.C. Wylie, Primordial germ cells of Xenopus embryos: the role of fibronectin in their adhesion during migration, Cell 27: 437 (1981).

    Article  Google Scholar 

  34. J.C. Boucaut, T. Darnibere, H. Boulebache, and J.P. Thiery, Prevention of gastrulation but not neuralation by antibodies to fibronectin in amphibian embryos, Nature, Lond. 307:364 (1984).

    Article  Google Scholar 

  35. J.P. Thiery, J.-L. Duband, A. Delouvee, G. Tucker, H. Aoyama, T.J. Poole, and K.M. Yamada© Ontogeny of the peripheral nervous system, J. Embryol. exp. Morphol. 82:35 (1984).

    Google Scholar 

  36. G.A. Dunn, Contact guidance of cultured tissue cells: a survey of potentially relevant properties of the substratum, in “Cell Behaviour”, R. Bellairs, A.S.G. Curtis, G.A. Dunn, eds., Cambridge University Press, Cambridge (1982).

    Google Scholar 

  37. D.C. Turner, J. Lawton, P. Dollenmeier, R. Ehrismann, and M. Chiquet, Guidance of myogenic cell migration by oriented deposits of fibronectin, Dev. Biol. 95: 497(1983).

    Article  Google Scholar 

  38. A. Baron-Von Evercooren, H.K. Kleinman, S. Ohno, P. Marangos, I.P. Schwartz, and M.E. Dubois-Dalcq, Nerve growth factor, laminin and fibronectin promote neurite outgrowth in human fetal sensory ganglion cultures, J. Neurosci. Res. 8:179 (1982).

    Article  Google Scholar 

  39. R.O. Hynes and A.T. Destree, Relationships between fibronectin (LETS protein) and actin, Cell 15:875 (1977).

    Article  Google Scholar 

  40. V.-P. Lehto, T. Vartio, and I. Virtanen, Fibronectin remains in the cytoskeletal preparations of cultured human fibroblasts, Cell Biol. Int. Rep. 5:417 (1981).

    Article  Google Scholar 

  41. J.D. Aplin, R.C. Hughes, C.L. Jaffe, and N. Sharon, Reversible cross-linking of cellular components of adherent fibroblasts to fibronectin and lectin-coated substrata, Exp. Cell Res. 134:488 (1981).

    Article  Google Scholar 

  42. H.K. Kleinman, G.R. Martin, and P.HC Fishman, Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen, Proc. Natl. Acad. Sci. U.S.A. 76:3367 (1979).

    Article  Google Scholar 

  43. P.J. Brown and R.L. Juliano, Admodulin: A cell surface glycoprotein specifically involved in fibronectin-mediated adhesion, J. Cell Biol. 99:16la (1984).

    Article  Google Scholar 

  44. T. Hasegawa, E. Hasegawa, W.-T. Chen, and K.M. Yamada, Characterization of a membrane glycoprotein complex implicated in cell adhesion to fibronectin, J. Cell Biol. 99:165a (1984).

    Google Scholar 

  45. R.C. Hughes, S.D.J. Pena, J. Clark, and R.R. Dourmashkin, Molecular requirements for the adhesion and spreading of hamster fibroblasts, Exp. Cell Res. 121:307 (1979).

    Article  Google Scholar 

  46. L. Kjellen, I. Pettersson, and M. Hook, Cell-surface heparan sulfate: an intercalated membrane proteoglycan, Proc. Nat. Acad. Sci. U.S.A. 78:5371 (1981).

    Article  Google Scholar 

  47. A.C. Rapraeger and M. Bernfield, Heparan sulfate proteoglycans from mouse mammary epithelial cells, J. Biol. Chem. 258: 3632 (1983).

    Google Scholar 

  48. L.S. Fransson, I. Carlstedt, L. Coster, and A. Malmstrom, Structure and function of cell-surface associated proteo- heparan sulphate, Eur. J. Cell Biol. 1:18 (1983).

    Google Scholar 

  49. A. Woods, M. Hook, L. Kjellen, C.G. Smith, and D.A. Rees, Relationship of heparan sulfate proteoglycans to the cytoskeleton and extracellular matrix of cultured fibroblasts, J. Cell Biol. 99:1743 (1984).

    Article  Google Scholar 

  50. A. Woods, J.R. Couchman, M. Hook, and So Johansson, Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin peptides. In Preparation.

    Google Scholar 

  51. M.D. Pierschbacher and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature, Lond. 309:30 (1984).

    Article  Google Scholar 

  52. S. Johansson, Demonstration of high affinity fibronectin-receptors on rat hepatocytes in suspension, J. Biol. Chem. In Press (1985).

    Google Scholar 

  53. A. Garcia-Pardo, E. Pearlstein, and B. Frangione, Primary structure of human plasma fibronectin. The 29,000-dalton NHterminal domain, J. Biol. Chem. 258:12670 (1983).

    Google Scholar 

  54. K. Sekiguchi, S. Hakomori, M. Funahashi, I. Matsumoto, and N. Seno, Binding of fibronectin and its proteolytic fragments to glycosaminoglycans, J. Biol. Chem. 258:14359 (1983).

    Google Scholar 

  55. R. Timpl, H. Rohde, P.Go Robey, S.I. Rennard, J.M. Foidart, and G.R. Martin, Laminin - A glycoprotein from basement membranes, J. Biol. Chem. 254:9933 (1979).

    Google Scholar 

  56. D. Edgar, R. Timpl, and H. Thoenen, The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival, EMBO J. 3:1463 (1984).

    Google Scholar 

  57. R. Timpl, S. Johansson, V. van Delden, I. Oberbaumer, and M. Hook, Characterization of protease-resistant fragments of laminin mediating attachment and spreading of rat hepatocytes, J. Biol. Chem. 258:8922 (1983).

    Google Scholar 

  58. J. Jilek and H. Hormann, Fibronectin (cold-insoluble globulin). VI. Influence of heparin and hyaluronic acid on the binding of native collagen, Hoppe-Seyler’s Z. Physiol. Chem. 360:597 (1979).

    Article  Google Scholar 

  59. M.H. Ginsberg, R.G. Painter, J. Forsyth, C. Birdwell, and E.F. Plow, Thrombin increases expression of fibronectin antigen on the platelet surface, Proc. Natl. Acad. Sci. U.S.A. 77:1049 (1980).

    Article  Google Scholar 

  60. W.T. Gibson, J.R. Couchman, R.A. Badley, H.J. Saunders, and C.G. Smith, Fibronectin in cultured rat keratinocytes: distribution, synthesis, and relationship to cytoskeletal proteins, Eur. J. Cell Biol. 30:205 (1983).

    Google Scholar 

  61. D.J. Donaldson and J.T. Mahan, Fibrinogen and fibronectin as substrates for epidermal cell migration during wound closure, J. Cell Sci. 62:117 (1983).

    Google Scholar 

  62. J.R. Couchman and S. Blencowe, Adhesion and cell surface relationships during fibroblast and epithelial migration in vitro, in “Cell Traffic in the Developing and Adult Organism”, G. Haemmerli and P. Strauli, eds., Karger, Basel. In Press (1985).

    Google Scholar 

  63. A.E. Postlethwaite, J. Keski-Oja, G. Balian, and A.H. Kang, Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000- molecular weight non-gelatin-binding fragment, J. Exp. Med. 15:194 (1981).

    Google Scholar 

  64. H.E.J. Seppa, K.M. Yamada, S.T. Seppa, M.H. Silver, H.K. Kleinman, and E. Schiffman, The cell binding fragment of fibronectin is chemotactic for fibroblasts, Cell Biol. Int. Rep. 5:813 (1981).

    Google Scholar 

  65. M.B. Furie and D.B. Rifkin, Proteolytically derived fragments of human plasma fibronectin and their localization within the intact molecule, J. Biol. Chem. 255:3134 (1980).

    Google Scholar 

  66. I.I. Singer, D.W. Kawka, D.M. Kazazis, and R.A.F. Clark, In vivo co-distribution of fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol. 98:2091 (1984).

    Article  Google Scholar 

  67. M. Kurkinen, A. Vaheri, P.J. Roberts, and S. Steinman, Sequential appearance of fibronectin and collagen in experimental granulation tissue, Lab. Invest. 43:47 (1980).

    Google Scholar 

  68. M.W. Lark and L.A. Culp, Multiple classes of heparan sulfate proteoglycans from fibroblast substratum adhesion sites, J. Biol. Chem. 259:6773 (1984).

    Google Scholar 

  69. M. Hook, L. Kjellen, S. Johansson, and J. Robinson, Cell surface glycosaminoglycans, Ann. Rev. Biochem. 53:847 (1984).

    Article  Google Scholar 

  70. A. Woods, J«R. Couchman, and M. Hook, Heparan sulfate proteoglycans of rat embryo fibroblastSo A hydrophobic form may link cytoskeleton and matrix components, J. Biol. Chem. Submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Couchman, J.R., Woods, A. (1986). Fibronectin: Role in Cell Surface Interactions. In: Crawford, N., Taylor, D.E.M. (eds) Interaction of Cells with Natural and Foreign Surfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2229-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2229-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9307-1

  • Online ISBN: 978-1-4613-2229-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics