Advertisement

Evolution of the Subendothelial Growth on Heparinised Aldehyde Crosslinked Arteries

  • Madeleine Moczar
  • Philippe David
  • Daniel Loisance

Abstract

The macromolecular constituents of prostheses of biological origin are recognised by the hydrolytic enzymes of the host and degraded in vivo. The host cells respond to the implantation and biodegradation of vascular substitutes by the synthesis of intraluminal and/or periprosthetic tissues. A neointimai proliferation progressing to an intraluminal occlusion may be one of the reasons of the long term postoperatory failures. Prosthetic aortic allografts in rats were replaced by an endothelialized elastic tissue, patent to blood1,2. The biosynthetic pattern of proteins in the elastin containing scar was similar to that of proteins in the intima-media of host aortal1.

Keywords

Hyaluronic Acid Uronic Acid Neointimal Hyperplasia Sulfated Glycosaminoglycan Biosynthetic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Moczar, J.P. Bessou and D. Loisance. Healing of biodegradable vascular prosthesis. Incorporation of 3H valine into proteins in the subendothelial scar and host intima-media of rat aorta. Connective Tissue Research 12:33 (1983).CrossRefGoogle Scholar
  2. 2.
    D. Loisance, M. Moczar, J. Leandri, J.P. Bessou and Ph. David. A new microarterial biograft. Trans. Am. Soc. Artif. Intern. Organs 27:401 (1981).Google Scholar
  3. 3.
    D. Loisance, Ph. David, J. Leandri, M. Moczar. Etude experimental d’une nouvelle prothese micro-arterielle. J. Chirurgie 121:355 (1984).Google Scholar
  4. 4.
    M. Moczar, Ph. David and D. Loisance. Vascular substitute from human placenta arteries. Glycosaminoglycan and elastin synthesis in neointimal hyperplasia. Life Support Systems 2:201 (1984).Google Scholar
  5. 5.
    G. Gamse, H.G. Fromme and H. Kresse. Metabolism of sulfated glycosaminoglycans in cultured endothelial cells and smooth muscle cells from bovine aorta. Biochim. Biophys. Acta 544:514 (1978).Google Scholar
  6. 6.
    B.P. Toole. Glycosaminoglycans in morphogenesis. In “Cell Biology of the Extracellular Matrix” E. D. Hay, ed. Plenum Press, New-York (1982).Google Scholar
  7. 7.
    L. Robert and M. Moczar. Age related changes of proteoglycans and glycosamoglycans. In “Glycosaminoglycans and Proteoglycans in Physiological and Pathological Process of Body Systems”. R.S. Varma, R. Varma and Pa. Warren, eds Karger, Basel (1982).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Madeleine Moczar
    • 1
    • 3
  • Philippe David
    • 2
  • Daniel Loisance
    • 2
  1. 1.Laboratoire de Biochimie du Tissu Conjonctif, CNRS Gr40France
  2. 2.Centre de Recherches Chirurgicales, CNRSFrance
  3. 3.Faculté de MédecineParis XII, CréteilFrance

Personalised recommendations