Advertisement

Physics of Solar Selective Surfaces

  • R. A. Buhrman
Chapter

Abstract

It has long been known that the radiative properties of surfaces can vary markedly from one portion of the electromagnetic spectrum to another. Research directed towards the technical development of materials that were strongly absorbing at short wavelengths (visible light) while being highly reflective at longer wavelengths (infrared radiation) extends back at least fifty years. But it is generally agreed that the modern development of selectively absorbing surfaces for solar energy conversion had its origin in the mid-1950’s when Tabor (1955, 1961) and Gier and Dunkle (1955) defined the basic concept of the use of spectral selectivity for the efficient photothermal conversion of solar radiation. The concept was, and remains today, quite straightforward — produce a material that has high absorbance α s over the spectral region in which there is significant solar radiation and has very low emittance ε T in the thermal infrared spectral region. The first practical examples of such selectively absorbing surfaces were also developed at that time (Tabor, 1955; Gier and Dunkle, 1955). An example of the performance of one of the first selective absorbers is shown in Fig. 4.1a. The solar absorptance of this particular material, which was “black nickel” electroplated onto bright nickel plated copper, was α s = 0.901 while it had a thermal emittance ε T = 0.05 at T = 20°C.

Keywords

Composite Film Composite Coating Absorber Layer Fill Fraction Antireflection Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agdur, B., Böling, G., Sellberg, F. and Ohman, Y. (1963), Phys. Rev. 130, 996.CrossRefGoogle Scholar
  2. Agnihotri, O. P. and Gupta, B. K. (1981), Solar Selective Surfaces, ( Wiley-Interscience ), New York.Google Scholar
  3. Bergman, D. J. (1982), Ann. Phys. 138, 78.CrossRefGoogle Scholar
  4. Bruggeman, D. A. G. (1935), Ann. Phys. (Leipzig) 24, 636.Google Scholar
  5. Cohen, R. W., Cody, G. D., Coutls, M. D. and Abeles, B. (1973), Phys. Rev. B, 8, 3689.CrossRefGoogle Scholar
  6. Craighead, H. G., Bartynski, R., Buhrman, R. A., Wojick, L., and Sievers, A. J. (1979), Solar Energy Materials 1, 105.CrossRefGoogle Scholar
  7. Craighead, H. G. and Buhrman, R. A. (1980), in Solar Materials Science, ed. L. E. Murr ( Academic, New York ), p. 277.Google Scholar
  8. Craighead, H. G., Howard, R. E., and Tennant, D. M. (1980), Appl. Phys. Lett. 37, 653.CrossRefGoogle Scholar
  9. Craighead, H. G., Howard, R. E., Sweeney, J. E., and Buhrman, R. A. (1981), Appl. Phys. Lett. 39, 29.CrossRefGoogle Scholar
  10. Cuomo, J. J., Ziegler, J. F. and Woodall, J. M. (1975), Appl. Phys. Lett. 26, 557.CrossRefGoogle Scholar
  11. Doremus, R. (1964), J. Chem. Phys. 40, 2389.CrossRefGoogle Scholar
  12. Davisson, C. and Weeks, J. R. (1924), J. Opt. Soc. Am. 8, 581.CrossRefGoogle Scholar
  13. Epstein, P. (1930), Proc. Natl. Acad. Sei. U.S.A., 16, 627.CrossRefGoogle Scholar
  14. Fan, J. C. C. and Bachner, F. J. (1975), J. Electrochem. Soc. 122, 1719.CrossRefGoogle Scholar
  15. Fan, J. C. C., Bachner, F. J., and Murphy, R. A. (1976), Appl. Phys. Lett. 28, 440.CrossRefGoogle Scholar
  16. Foote, P. D. (1915), Bull. Natl. Bur. Stand. 11, 607.Google Scholar
  17. Garnett, J. C. M. (1904), Phil. Trans. Roy. Soc. London, 203, 385.CrossRefGoogle Scholar
  18. Gibson, U. J. and Buhrman, R. A. (1983), Phys. Rev. B27, 5046.CrossRefGoogle Scholar
  19. Gibson, U. J., Craighead, H. G. and Buhrman, R. H. (1982), Phys. Rev. B25, 1449.Google Scholar
  20. Gier, J. T. and Dunkle, R. V. (1955), Trans. Conf. on Use of Solar Energy, The Scientific Basic, Tucson, (Univ. of Arizona, Tucson) 2, Pt. 1A, p. 41.Google Scholar
  21. Gittleman, J. I., Sichel, E. K., Lehman, H. W., and Widmer, R. (1979), Appl. Phys. Lett. 35, 742.CrossRefGoogle Scholar
  22. Gogna, P. K. and Chopra, K. L, (1979), Thin Solid Films, 63, 183.CrossRefGoogle Scholar
  23. Granqvist, C. G. and Hunderi, O. (1977), Phys. Rev. B, 16, 3513.CrossRefGoogle Scholar
  24. Granqvist, C. G. and Hunderi, O. (1979), J. Appl. Phys., 50, 1058.CrossRefGoogle Scholar
  25. Groth, R. (1966), Phys. Stat. Sol. 14, 69.CrossRefGoogle Scholar
  26. Gupta, B. K., Thangarij, R., and Agnihotri, O. P. (1979), Solar Energy Mat. 1, 471.CrossRefGoogle Scholar
  27. Hamberg, I., Hjortsberg, A., and Granqvist, C. G. (1982), Appl. Phys. Lett. 40, 362.CrossRefGoogle Scholar
  28. Hanai, T. (1960), Kollaid Zeitschr. 171, 23.CrossRefGoogle Scholar
  29. Harding, G. L. and Lake, M. R. (1981), Solar Energy Mat. 5, 445.CrossRefGoogle Scholar
  30. Hass, G., Schroeder, H. H., and Turner, A. F. (1956), J. Opt. Soc. Am. 46, 31.CrossRefGoogle Scholar
  31. Holland, K. G. T. (1963), Solar Energy 7, 117.CrossRefGoogle Scholar
  32. Ignatiev, A., O’Neill, P., and Zajac, G. (1979), Solar Energy Mat. 1, 69.CrossRefGoogle Scholar
  33. Johnson, P. B. and Christy, R. W. (1972), Phys. Rev. B6, 4370; (1974), Phys. Rev. B9, 5056.Google Scholar
  34. Lamb, W., Wood, D. M., and Ashcroft, N. W. (1980), Phys. Rev. B, 21, 2248.Google Scholar
  35. Lampert, C. M. (1979), Solar Energy Mat., 1, 319.CrossRefGoogle Scholar
  36. Lampert, C. M. and Washburn, J. (1979), Solar Energy Mat., 1, 81.CrossRefGoogle Scholar
  37. Landauer, R. (1978), in “Electrical Transport and Optical Properties of Inhomogeneous Media”, J. C. Garland and D. B. Tanner, eds. ( American Institute of Physics, New York ), p. 2.Google Scholar
  38. Mar, H. Y. B., Peterson, R. E., and Zimmer, P. B. (1976), Thin Solid Films 39, 75.CrossRefGoogle Scholar
  39. McDonald, G. E. (1976), Solar Energy 17, 119.CrossRefGoogle Scholar
  40. McMahon, T. J. and Josperson, S. N. (1974), Appl. Optics 13, 2750.CrossRefGoogle Scholar
  41. Mie, G. (1908), Ann. Phys. (Leipzig), 25, 377.Google Scholar
  42. Meinel, A. P. and Meinel, M. P. (1976), Appl. Solar Energy, Addison-Wesley, Reading, MA.Google Scholar
  43. Minot. M. J. (1976), J. Opt. Soc. Am. 66, 515.CrossRefGoogle Scholar
  44. Moss, T. S. (1959), “Optical Properties of Semiconductors”, ( Academic Press, New York).Google Scholar
  45. Niklasson, G. A., Granqvist, C. G., and Hunderi, O. (1981), App. Opt. 20, 26.CrossRefGoogle Scholar
  46. Niklasson, G. A. and Granqvist, C. G. (1983), J. Mater. Sci. 18, 3475.CrossRefGoogle Scholar
  47. Niklasson, G. A. and Granqvist, C. G. (1984), J. Appl. Phys. 55, 3382.CrossRefGoogle Scholar
  48. Nyberg, Glen A. and Buhrman, R. A. (1982), Appl. Phys. Lett. 40, 129.CrossRefGoogle Scholar
  49. Nyberg, Glen A., Craighead, H. G., and Buhrman, R. A. (1982), Thin Solid Films 96, 185.CrossRefGoogle Scholar
  50. Parker, W. J. and Abbott, G. C. (1965), in “Symposium on Thermal Radiation of Solids”, (S. Katzoff, ed.), p. 11, NASA SP-55.Google Scholar
  51. Peterson, R. E. and Ramsey, J. W. (1975), J. Vac. Sci. Technol. 12. 174.CrossRefGoogle Scholar
  52. Pettit, G. D., Cuomo, J. J., DiStefano, T. H., and Woodall, J. M. (1978), IBM Res. Dev. 22, 372.CrossRefGoogle Scholar
  53. Pramanik, D. Sievers, A. J., and Silsbee, R. H. (1979), Solar Energy Mat. 2, 81.CrossRefGoogle Scholar
  54. Rayleigh, Lord (1912), Proc. Roy. Soc. London, 86, 207.CrossRefGoogle Scholar
  55. Ritchie, I. T. and Window, B. (1977), Appl. Opt., 16, 1438.CrossRefGoogle Scholar
  56. Ritchie, I. T., Sharma, S. K., Valignat, J., and Spitz, J. (1980), Solar Energy Mat. 2, 167.CrossRefGoogle Scholar
  57. Schmidt, R. N. and Park, K. C. (1965), Appl. Optics 4, 917.CrossRefGoogle Scholar
  58. Seraphin, B. O. and Meinel, A. B. (1976), in “Optical Properties of Solids: New Developments”, B. O. Seraphin, ed. (North Holland Publishing Co., Amsterdam ), Chap. 17.Google Scholar
  59. Seraphin, B. O. (1979), in Solar Energy Conversion: Solid State Physics Aspects (Topics in Applied Physics 31), B. O. Seraphin, ed. ( Springer-Verlag, Berlin ), p. 5.Google Scholar
  60. Sheng Ping (1980), Phys. Rev. Lett. 45, 60.CrossRefGoogle Scholar
  61. Sievers, A. J. (1978), J. Opt. Soc. Am. 68, 1505.CrossRefGoogle Scholar
  62. Sievers, A. J. (1979), in “Solar Energy Conversion - Solid State Physics Aspects”, (Topics in Applied Physics 31), B. O. Seraphin, ed. ( Springer-Verlag, Berlin ), p. 57.Google Scholar
  63. Sievers, A. J. (1980), in Solar Materials Science, ed. L. E. Murr ( Academic, New York ), p. 229.Google Scholar
  64. Sikkens, M. (1981). Solar Energy Materials 5, 55.CrossRefGoogle Scholar
  65. Smith, G. B. (1977), J. Phys. D. 10, L39.CrossRefGoogle Scholar
  66. Smith, G. B. (1979), Appl. Phys. Lett. 35, 668.CrossRefGoogle Scholar
  67. Stephens, R. B. and Cody, G. D. (1978), AIP Conf. Proc. 40, 225.CrossRefGoogle Scholar
  68. Stephens, R. B. and Cody, G. D. (1979), Solar Energy Mat. 1, 397.CrossRefGoogle Scholar
  69. Stratton, J. A. (1941), Electromagnetic Theory, (McGraw-Hill, New York ), Chap. 9.Google Scholar
  70. Tabor, H. (1955), Intl. Conf. on Use of Solar Energy, The Scientific Basis, Tucson, 1955: (Univ. of Arizona, Tucson, U.S.A.) EL, Pt. 1A, p. 41.Google Scholar
  71. Tabor, H. (1961), Proc. Natl. Acad. Sei. 47, 1271.CrossRefGoogle Scholar
  72. Thornton, J. A., Penfold, A. S., and Lamb, J. L. (1980), Thin Solid Films 72, 101.CrossRefGoogle Scholar
  73. Thornton, J. A. and Lamb, J. L. (1981), Thin Solid Films 83, 377.CrossRefGoogle Scholar
  74. Thornton, J. A. and Lamb, J. L. (1982), Thin Solid Films 96, 175.CrossRefGoogle Scholar
  75. Touloukian, Y. S. (1970), “Thermophysical Properties of Matter” 7, p. 24a, Plenum Press, New York.Google Scholar
  76. Trotter, D. M., Jr. and Sievers, A. J. (1980), Appl. Opt. 19, 711.CrossRefGoogle Scholar
  77. Wood, D. W. and Ashcroft, N. W. (1977), Phil. Mag. 35, 69.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. A. Buhrman

There are no affiliations available

Personalised recommendations