Skip to main content

Thermosyphon Solar Energy Water Heaters

  • Chapter

Abstract

A review of research, development and system appraisal activities concerned with natural-circulation solar-energy water-heaters is presented. The history of their use and the factors which have influenced their popularity are discussed. An overview of the present commercial situation is provided and the advanced product engineering of recent designs highlighted. Mathematical models which describe the thermal behaviours and the experimentally-observed operational characteristics of thermosyphon solar water heaters are examined. Alternative means of preventing nocturnal reverse circulations are discussed. Results are reported of studies comparing thermosyphon unit performances with those of other solar-energy water-heaters. Comparative evaluations are also reported for the behaviours of direct and indirect thermosyphon systems. Current approaches to standard test procedures for rating whole systems are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Gadomski, “Amcor profits from close dealer ties,” Solar Age, 9, 45–47 (June 1984).

    Google Scholar 

  2. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley and Sons, New York, USA (1980).

    Google Scholar 

  3. D. A. Bainbridge, Integral Passive Solar Water Heater Book, Passive Solar Institute, Davis, California, USA (1981).

    Google Scholar 

  4. A. Mertol and R. Greif, “A review of natural-circulation loops,” in Natural Convection: Fundamentals and Applications, edited by W. Aung, S. Kakac and R. Viskanta, Hemisphere Publishing Corporation, New York, USA (1985).

    Google Scholar 

  5. W. J. Bailey, Solar Heater, US Patent No. 966, 070 (1910).

    Google Scholar 

  6. K. Butti and J. Perlin, A Golden Thread, Van Nostrand, Reinhold Co., New York, USA, (1980).

    Google Scholar 

  7. F. A. Brooks, “Solar energy and its use for heating water in California,” in Agricultural Experimental Station Bulletin, 602, University of California, Berkeley, California (1936).

    Google Scholar 

  8. F. A. Brooks, “Use of solar energy for heating water” in Smithsonian Report, 157–181 (1939).

    Google Scholar 

  9. A. J. Millas, “Some bioclimatic issues in the design of ocean front communities: The example of “old” Miami Beach, Florida,” Proceedings of the Second International Conference on Passive and Low Energy Architecture, 309–316 ( Crete, Greece), Pergamon Press, Oxford, U.K. (June 1983).

    Google Scholar 

  10. A. Carnes, “Heating water by solar energy,” Agricultural Engineering, 6 (13), 156–159 (1932).

    Google Scholar 

  11. H. L. Alt, “Sun effect and the design of solar heaters,” Heating, Piping and Air Conditioning, 111–118 (February 1935).

    Google Scholar 

  12. A. Merle, “Solar heaters for service water,” Heating and Ventilation, 37, 22–26 (1940).

    Google Scholar 

  13. J. E. Scott, “The solar water heater industry in South Florida: History and projections,” Solar Energy, 18, 387–393 (1976).

    Google Scholar 

  14. ANON, “Putting sunbeams on the roof to work,” Plumbing and Heating Journal, 117, 44–46 (1946).

    Google Scholar 

  15. H. M. Hawkins, “Domestic solar water heating in Florida,” Engineering and Industrial Experimental Station Bulletin, 18, University of Florida, Gainsville, Florida, USA (September 1947).

    Google Scholar 

  16. D. E. Root, “Practical application of solar energy in Florida,” Florida Scientist, 39 (3), 138–172 (1976).

    Google Scholar 

  17. J. I. Yellot and R. Sobotka, “An investigation of solar water heater performance,” ASHRAE Transactions 7, 425–453 (1964).

    Google Scholar 

  18. R. Schwolsky, “Solar Installers: The Evolution of a Trade,” Solar Age, 28–30, 48 (March 1978).

    Google Scholar 

  19. S. Andrassy, “Solar water heaters,” Proceedings of the United Nations Conference on New Sources of Energy, Rome, Italy, 20–22 (August 1961).

    Google Scholar 

  20. R. Sobotka, “Solar water heaters,” Proceedings of the United Nations Conference on New Resources of Energy, Rome Italy, 21–31 (August 1961).

    Google Scholar 

  21. G. Bates, “A solar water-heating system,” Journal of International Sugar, 43 (514), 309–310 (1941).

    Google Scholar 

  22. R. N. Morse, “Solar water heaters,” Proceedings of the World Symposium on Applied Solar Energy, Phoenix, Arizona, USA, 191–200 (1955).

    Google Scholar 

  23. D. N. W. Chinnery, “Solar water heating in South Africa,” CSIR Research Report, 284, 1–79 (1967).

    Google Scholar 

  24. A. Whillier, “The utilization of solar energy in South Africa,” Journal of the South African Institution of Mechanical Engineers, 2 (10), 261–267 (1953).

    Google Scholar 

  25. Y. B. Ng and C. T. Leung, “Solar technology in China: A review”, Sunworld, 6 (4), 114–117 (1982).

    Google Scholar 

  26. B. Gough and A. Z. Lin, “Solar energy research and application in China”, Proceedings of the United Nations Symposium on Solar Science and Technology, Beijing, China, 1, 214–216 (1980).

    Google Scholar 

  27. K. N. Mathur, M. L. Khanna, T. N. Davey and S. P. Suri, “Domestic solar water heater,” Journal of Scientific and Industrial Research, 18 (A), 51–58 (1958).

    Google Scholar 

  28. J. Savornin, “Study of solar water heating in Algeria,” Proceedings of the Conference on New Sources of Energy, Rome, Italy, 5, 20 (August 1964).

    Google Scholar 

  29. R. N. Morse, “The Design and Construction of Solar Water Heaters,” Report E.D. I, Central Experimental Workshops, Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia (February 1955).

    Google Scholar 

  30. R. N. Morse, “Solar Water Heaters for Domestic and Farm Use,” Report E.D. 5, Engineering Section, Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia (September 1957).

    Google Scholar 

  31. J. T. Czarnecki, “Performance of experimental solar water heaters in Australia,” Solar Energy, 2, 2–6 (1958).

    Google Scholar 

  32. R. N. Morse, “Solar energy research: Some Australian investigations,” Solar Energy, 3, 26–30 (1959).

    Google Scholar 

  33. ANON, “Report and Recommendations”, Inter-departmental Committee on Equipment in Tropical Staff Houses and Community Amenities: Appendix D., Government of the Commonwealth of Australia (December 1957).

    Google Scholar 

  34. I. Tanishita, “Present status of solar water heaters in Japan,” Transactions of the Conference on the Use of Solar Energy, Tucson, Arizona, USA, 3, 67–77 (1955).

    Google Scholar 

  35. I. Tanishita, “Recent development of solar water heaters in Japan”, Proceedings of the United Nations Conference on New Sources of Energy, Rome, Italy, 102–110 (August 1961).

    Google Scholar 

  36. I. Oshira, “The use of solar radiation in Japan”, Proceedings of the International Seminar on Solar and Aeolian Energy, Sounion, Greece, 215–219 (September 1961).

    Google Scholar 

  37. I. Tanishita, “Present situation of commercial solar water heaters in Japan”, Proceedings of the International Solar Energy Society Conference, Melbourne, Australia, Paper 2 /73 (March 1970).

    Google Scholar 

  38. ANON, “Sales Literature for HES-202 Solar Water Heater”, Hitachi Chemical Co. Ltd., Tokyo, Japan (1981).

    Google Scholar 

  39. ANON, “Sales Literature for SW-T202B and SW-T403A Solar Water Heaters” Yazaki Corporation, Tokyo, Japan (1981).

    Google Scholar 

  40. P. R. Zweig, “The Farallones approach: Stretching the prototype”, Alternative Sources of Energy, 44, 10–12 (1980).

    Google Scholar 

  41. E. Johnson, “Solar hot water: An owner-builder perspective”, Alternative Sources of Energy, 43, 18–22 (1980).

    Google Scholar 

  42. C. Weenan, H. Bergan and E. Smith, “A solar water heater from Botswana”, Appropriate Technology, 77 (2), 4–5 (1980).

    Google Scholar 

  43. B. T. Austin, “The Andros project”, Proceedings of the Fourth National Passive Solar Conference, Kansas City, Missouri, USA, 622 (October 1979).

    Google Scholar 

  44. S. S. Nanwani, “Comparative study of two thermosyphon solar water heaters in the climate of San Jose, (Costa Rica)”, Solar World Forum, Brighton, England, Paper I/Al/6 (August 1981).

    Google Scholar 

  45. H. Masson, “Solar motors with flat-plate collectors”, Solar Energy, 10(4), 165– 169 (1965).

    Google Scholar 

  46. J. Arias, C. Buerba and R. Best, “Solar and biogas milk pasteurizer”, Proceedings of the International Seminar on Energy Conservation and the Use of Solar and Other Renewable Energies in Argiculture, Horticulture and Fishculture, London, England, Pergamon Press, Oxford, U.K., 1–7 (September 1980).

    Google Scholar 

  47. G. Grossman, A. Shitzer and Y. Zvirin, “Heat transfer analysis of a flat-plate solar energy collector”, Solar Energy, 19, 493–502 (1977).

    Google Scholar 

  48. D. Wolf, A. Tamir and A. I. Kudish, “A central solar domestic hot water system performance and economic analysis”, Energy, 5, 191–205 (1980).

    CAS  Google Scholar 

  49. D. Coxon, “Domestic water heating in Israel”, Sunworld, 6(4), 108–109, 121 (1982).

    Google Scholar 

  50. A. Shitzer, D. Kalmanoviz, Y. Zvirin and G. Grossman, “Experiments with a flat-plate solar water heating system in thermosyphonic flowr”, Solar Energy, 22, 27–36 (1979).

    Google Scholar 

  51. M. Adachi, “Solar energy water-heaters in Japan”, Journal of Solar Energy, 6(2), 80–86, (1980). In Japanese.

    Google Scholar 

  52. I. Lowe, D. E. Backhouse and M. Sheumacke, “The experience of solar hot-water systems”, Search, 15, 165–167 (1984).

    Google Scholar 

  53. P. WilTbulswas, “Economic analysis of solar water-heater arid solar stills in Thailand”, Solar Energy International Progress, Proceedings of the International Symposium - Workshop on Solar Energy, Cairo, Egypt, 4, Pergamon Press, Oxford, U.K., 2126–2137 (June 1978).

    Google Scholar 

  54. N. M. Nahar, “Energy conservation and field performance of a natural circulation type solar water heater”, Energy, 5, 461–464 (1984).

    Google Scholar 

  55. G. Yaciuk, “Agricultural applications of solar energy”, Solar Energy Conversion II, Selected Lectures From the International Symposium on Solar Energy Utilization, London, Ontario, Canada, Pergamon Press, Oxford, U.K., 337–353 (August 1980).

    Google Scholar 

  56. B. H. Bowen, “Performance of solar water heaters manufactured in Sierrra Leone, West Africa”, International Journal of Ambient Energy, 4, 69–78 (1983).

    Google Scholar 

  57. R. Lazzarin, “Gli impianti ad energia solare a circolazione naturale”, L’Installatore Italiano, 32 (7), 939–948 (1981).

    Google Scholar 

  58. A. Russel-Cowan, “Every man’s solar energy”, Proceedings of Solar Energy in the 580’s Conference, London, England, Pergamon Press, Oxford, U.K., 69–77 (January 1980).

    Google Scholar 

  59. ANON, “A study of installation problems and component interaction in solar collector water-heating systems”, Report for the Energy Technology Support Unit of the U.K. Department of Energy, Pendar Technical Associates Ltd., Bridgewater, Somerset, England (February 1979).

    Google Scholar 

  60. B. Norton, L. J. Petts, D. Smellie and S. D. Probert, “Opinions of prospective purchasers concerning water heating by solar energy”, Proceedings of the UK-ISES Conference on Developing the Market in Solar Energy Thermal Systems, London, England, 69–78 (December 1982).

    Google Scholar 

  61. ANON, “The self-control on the sale of solar hot water heaters”, Solar Systems, 8, 37–42 (1980). In Japanese.

    Google Scholar 

  62. N. Yamaguchi, “Installation of solar collectors”, Journal of the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, 57(1), 55–59 (1983). In Japanese.

    Google Scholar 

  63. Private Communication. SolaHart, Perth, Western Australia (1984).

    Google Scholar 

  64. D. J. Close, “The performance of solar water heaters with natural circulation”, Solar Energy, 6, 33–40 (1962).

    Google Scholar 

  65. J. C. V. Chinappa, “Letter to the editor”, Solar Energy, 7, 26 (1963).

    Google Scholar 

  66. V. G. Desa, “Solar energy utilization at Dacca”, Solar Energy, 8, 83–90 (1963).

    Google Scholar 

  67. M. Iqbal, “Free-convective effects inside tubes of fiat-plate solar collectors”, Solar Energy, 10 (4), 207–211 (1966).

    Google Scholar 

  68. F. W. Larsen and J. P. Hartnett, “Effects of aspect ratio and tube orientation on free-convection heat transfer to water and mercury in enclosed circular tubes”, ASME Journal of Heat Transfer, 83 (1), 87–93 (1961).

    CAS  Google Scholar 

  69. C. L. Gupta and H. P. Garg, “System design in solar water heaters with natural circulation”, Solar Energy, 12, 163–182 (1968).

    Google Scholar 

  70. A. V. Spyridonos, “Contribution a Panalyse du regime d’un thermosiphon solaire”, Bulletin de Comples, 19, 19–28 (June 1972). In French.

    Google Scholar 

  71. A. V. Tzafestas, A. V. Spyridonos and N. G. Koumoutsos, “Finite-difference modelling, identification and simulation of a solar water-heater”, Solar Energy, 16, 25–31 (1974).

    Google Scholar 

  72. M. S. Sodha and G. N. Tiwari, “Analysis of natural circulation solar water- heating systems”, Energy Conversion and Management, 21, 283–288 (1981).

    Google Scholar 

  73. M. S. Sodha, S. N. Shukia and G. N. Tiwari, “Transient analysis of a natual circulation solar water heater with a heat exchanger”, Journal of Energy, T, 107–111 (1983).

    Google Scholar 

  74. P. K. Sarma, A. S. Al-Juboruri and S. J. Al-Janadi, “An explicit analysis of a natural circulation loop with reference to flat-plate solar collectors”, Proceedings of the Seminar on Energy Conversation in Heating, Cooling and Ventilating Buildings, Dubrovnik, Yugoslavia, 2, Hemisphere Publishing, Washington, D. C., USA, 795– 802 (August 1977).

    Google Scholar 

  75. A. Sfeir, G. Menguy and S. Mujais, “A numerical model for a solar water heater”, Proceedings of the International Conference on Helio-technique and Development, Dhahran, Saudi Arabia, 2, 38–52 (November 1975).

    Google Scholar 

  76. B. Nimmo, W. Clark and J. Pearce, “Analytical and experimental study of thermosyphon solar water heaters”, Proceedings of the Annual Meeting of the American Section of the International Solar Energy Society, Orlando, Florida, USA, 4, 30–34 (June 1977).

    Google Scholar 

  77. K. S. Ong, “A finite-difference method to evaluate the thermal performance of a solar water heater”, Solar Energy, 16, 137–147 (1974).

    Google Scholar 

  78. K. S. Ong, “An improved computer program for the thermal performance of a solar water heater”, Solar Energy, 18, 183–191 (1976).

    Google Scholar 

  79. G. L. Morrison and D. B. J. Eanatunga, “Transient response of thermosyphon solar collectors”, Solar Energy, 24, 55–61 (1980).

    Google Scholar 

  80. A. D. Cardenas, “Unsteady natural convection of thermosyphon solar collectors”, Proceedings of Energex ′82, Regina, Saskatchewan, Canada, I/H, Solar Energy Society of Canada, 123–126 (August 1982).

    Google Scholar 

  81. W. F. Phillips and R. A. Pate, “A hot liquid energy storage system utilizing natural circulation”, ASME Paper 74-WA/HT-16, (1973).

    Google Scholar 

  82. W. F. Phillips and R. D. Cook, “Natural circulation from a flat-plate collector to a hot liquid storage tank”, ASME Paper 75-HT-53 (1975).

    Google Scholar 

  83. J. W. Baughn and D. A. Dougherty, “Experimental investigation and computer modelling of a solar natural circulation system”, Proceedings of the Annual Meeting of the American Society of the International Solar Energy Society, Orlando, Florida, USA, 4, 25–29 (June 1977).

    Google Scholar 

  84. J. W. Baughn and D. A. Dougherty, “Effect of storage height on the performance of a natural circulation (thermosyphon) hot water system”, Proceedings of the Second National Passive Solar Conference, University of Pennsylvania, USA, 637– 641 (March 1978).

    Google Scholar 

  85. Y. Zvirin, A. Shitzer and G. Grossman, “The natural-circulation solar heater: Models with linear and non-linear temperature distributions”, International Journal of Heat and Mass Transfer, 20, 997–999 (1977).

    Google Scholar 

  86. G. L. Morrison and D. B. J. Ranatunga, “Thermosyphon circulation in solar collectors”, Solar Energy, 24, 191–198 (1980).

    CAS  Google Scholar 

  87. H. L. Langhaar, “Steady flow in the transition length of a straight tube”, ASME Journal of Applied Mechanics, 9, 55–58 (1942).

    Google Scholar 

  88. B. J. Huang, “Similarity theory of a solar water-heater with natural circulation”, Solar Energy, 25, 105–116 (1980).

    Google Scholar 

  89. M. Daneshyar, “Mean monthly performance of solar water-heaters with natural circulation”, Proceedings of the International Solar Society Silver Jubilee Congress, Atlanta, Georgia, USA, 2, 983–987 (May 1979).

    Google Scholar 

  90. J. A. Manrique, “Digital simulation of a solar water heating system under natural circulation conditions”, Proceedings of the Seminar on Energy Conservation in Heating, Cooling and Ventilating Buildings, Dubrovnik, Yugoslavia, Hemisphere Publishing, Washington, D. C., USA, 2, 783–793 (August 1977).

    Google Scholar 

  91. P. C. Lobo, “Solar collector performance without flow measurement”. Proceedings of the Second International Conference on Alternative Energy Sources, Miami, Florida, USA, 1. 133–143 (December 1979).

    Google Scholar 

  92. A. Moult and J. M. Taylor, “Mathematical modelling of thermosyphon solar- heating systems”, Proceedings of the Third International Conference on Future Energy Concepts, Institution of Electrical Engineers, London, England, 40–43 (January 1981).

    Google Scholar 

  93. N. Sasamori and T. Takasaka, “Simulation study of solar water heater”, Report of the Tokyo Metropolitan Industrial Technical Institute, 33–38 (1975). In Japanese.

    Google Scholar 

  94. T. Jasinski and S. Buckley, “Thermosyphon analysis of a thermic diode solar heating system”, ASME Paper 77-WA/Sol 9 (1977).

    Google Scholar 

  95. Y. Meas, J. Quintana, A. Samano and A. Fernandez, “Black fluids: A new way to collect solar energy,” Proceedings of the Annual Meeting of the American Section of the International Solar Energy Society, Philadelphia, Pennsylvania, USA, 4, 281–284 (May 1981).

    Google Scholar 

  96. W. L. Dutre, L. Cypers, J. Berghmans and A. Debosscher, “Hot-water production by means-of a solar thermosyphon loop”, Proceedings of the International Symposium - Workshop on Solar Energy, Cairo, Egypt, Pergamon Press, Oxford, UK 2, 745–766 (June 1978).

    Google Scholar 

  97. F. L. Stasa and K. D. Singh, “Computer programs development for the design and analysis of thermosyphon and forced-flow solar domestic hot water systems”, Solar Engineering - 1982, Proceedings of the Fourth Annual Conference of the ASME Solar Energy Division, Ed. by W. D. Turner, ( April 1982 ).

    Google Scholar 

  98. A. Mertol, W. Place, T. Webster and R. Greif, “Detailed loop model (DLM) analysis of liquid solar thermosyphons with heat exchangers”5, Solar Energy, 27 (5), 367–387 (1981).

    Google Scholar 

  99. B. J. Huang and C. T. Hsieh, “A simulation method for solar thermosyphon collector”, Solar Energybf 35 (1), 31–43 (1985).

    Google Scholar 

  100. Z. P. Song and H. J. Zhang, “Prediction of system performance of solar water heaters for a specified locality”, Solar Energy, 28 (5) 433–441 (1982).

    Google Scholar 

  101. M. F. Khahil, “Performance of solar flat plate collector”, Proceedings of the Solar Energy and Conservation Symposium, Miami, Florida, USA, 74–86 (December 1978).

    Google Scholar 

  102. H. F. Creveling, J. F. Depaz, J. Y. Baladi and R. J. Schoenhals, “Stability characteristics of a single phase free convection loop”, Journal of Fluid Mechanics, 67, 65–84 (1975).

    Google Scholar 

  103. A. J. Addlessee, “Frictional resistance of low Reynolds number flows established by heat transfer”, Letters in Heat and Mass Transfer, 7, 249–255 (1980).

    Google Scholar 

  104. S. Kaizerman, E. Wacholder and E. Elias, “Stability and transient behaviour of a vertical toroidal thermosyphon”, ASME Paper 81-WA/HT-ll (1981).

    Google Scholar 

  105. E. Wacholder, S. Kaizerman and E. Elias, “Numerical analysis of the stability and transient behaviour of natural-convection loops”, International Journal of Engineering Science, 20, 1235–1252 (1982).

    Google Scholar 

  106. A. Mertol, R. Greif and Y. Zvirin, “Two-dimensional study of heat transfer and fluid flow in a natural convection loop”, ASME Journal of Heat Transfer, 104, 508–514 (1982).

    Google Scholar 

  107. M. Seen and C. Trevino, “Dynamic analysis of a one-dimensional thermosyphon model”, Solar World Forum, Brighton, England, Paper SM/33 (August 1981).

    Google Scholar 

  108. W. L. Borst, P. Sinha and J. L. Higginbotham. Higginbotham, “Experimental and theoretical studies on thermosyphon solar heat collectors”, Solar Engineering - 1982, Proceedings of the Fourth Annual Conference of the ASME Solar Energy Division, Ed. by W. D. Turner, Albuquerque, New Mexico, USA (April 1982).

    Google Scholar 

  109. O. Oshihara, “Experimental study on the circulating-water rate measurement in a solar water heater (Part 2)”, Proceedings of the Society of Heating, Air Conditioning and Sanitary Engineers of Japan, Conference, Tokyo, Japan, 105–108 (October 1981). In Japanese.

    Google Scholar 

  110. H. Heywood, “Solar energy: past, present and future applications”, Engineering, 176, 388–390 and 409–411 (1953).

    Google Scholar 

  111. H. Heywood, “Solar energy for water-and-space heating”, Journal of Institute of Fuel, 27, 334–352 (1954).

    Google Scholar 

  112. C. F. Kettleborough, “Experimental results on thermostatically-controlled solar water heaters”, Solar Energy, 3, 55–58 (1959).

    Google Scholar 

  113. G. J. Parker, “The performance of a solar water-heating system on a dwelling in Christchurch, New Zealand”, Solar Energy, 26, 187–197 (1981).

    Google Scholar 

  114. M. L. Khanna, “The development of a solar water-heater and its field trials under Indian tropical conditions”, Solar Energy, 12, 255–261 (1968).

    Google Scholar 

  115. M. Lilly white, C. Massie, C. Breitenstein, R. Coop and K. Boggs, “The performance of a 40-gallon solar thermosyphon water heater system at high altitudes”, Proceedings of the Second National Passive Solar Conference, Philadelphia, Pennsylvania, USA, 651 (March 1978).

    Google Scholar 

  116. J. P. Gupta and R. K. Chopra, “Solar space heating at high altitude conditions”, Solar Energy, 18, 51–57 (1976).

    Google Scholar 

  117. H. Norberg-Hodge, “Passive solar heating - improved living conditions for a high altitude population”, Appropriate Technology, 7 (7), 7–9 (1980).

    Google Scholar 

  118. J. S. Van Wieringen, “Prospects for solar energy for providing low temperature heat”, Applied Energy, 7, 67–81 (1980).

    Google Scholar 

  119. B. Lampcov, “Temperate climate effects on thermosyphon solar water heater productivity”, Proceedings of the Fifth National Passive Solar Conference, Amherst, Massachusetts, USA, 1066–1070 (October 1980).

    Google Scholar 

  120. C. J. Kelly, “Performance of two passive domestic hot-water systems”, Proceedings of the Sixth National Passive Solar Conference, Portland, Oregon, USA, 126–130 (September 1981).

    Google Scholar 

  121. ANON, “Solar energy system performance evaluation: Mei Wai Wong, Honolulu, Hawaii”, National Solar Data Program Report, Solar/1014/80/14, U.S. Department of Energy, Washington, D.C., USA (1980).

    Google Scholar 

  122. S. Pallis, “Frost resistance of solar water-heating direct thermosyphons”, Sun at Work in Britain, 8, 34–40 (1979).

    Google Scholar 

  123. O. Ishira, “Experimental study on the circulating water rate measurement in a solar water (Part 1)”, Proceedings of the Society of Heating, Air-Conditioning and Sanitary Engineers Conference, Osaka, Japan., 153–156 (October 1980). In Japanese.

    Google Scholar 

  124. B. Norton and S. D. Probert, “Measured performances of natural-circulation solar-energy water heaters”, Applied Energy, 16, 1–26 (1984).

    Google Scholar 

  125. J. E. Braun arjd A. H. Fanney, “Design and evaluation of thermosyphon solar water-heating systems”, Proceedings of the Annual Conference of the American Solar Energy Society, Minneapolis, Minnesota, USA, 283–288 (June 1983).

    Google Scholar 

  126. M. F. Young and J. B. Bergquam, “Performance characteristics of a thermosyphon solar domestic hot-water system”, ASME Journal of Solar Energy Engineering, 103, 193–200 (1981).

    Google Scholar 

  127. A. I. Kudish and P. Santamaura, “A direct measurement of thermosyphon flow”, Proceedings of the Annual Conference of the American Solar Energy Society, Minneapolis, Minnesota, USA, 289–293 (June 1983).

    Google Scholar 

  128. B. Norton and S. D. Probert, “Characteristics of thermosyphonic solar-energy water-heaters”, Proceedings of the Fourth International Conference on Energy Options — The Role of Alternatives in the World Energy Scene, Institution of Electrical Engineers, London, England, 39–42 (April 1983).

    Google Scholar 

  129. H. Tabor, “A note on the thermosyphon solar hot-water heater”, Bulletin de Comples, IT, 33 (December 1969).

    Google Scholar 

  130. J. M. Gordon and Y. Zarmi, “Thermosyphon systems. Single vs. multi-pass”, Solar Energy, 27, 441–442 (1981).

    Google Scholar 

  131. Y. F. Wang and Z. L. Lee, “A comparison between the “once-through” and the “thermosyphon” solar water-heaters and the calculation of their thermal efficiencies”, Atca Energiae Solaris Sinica, 2, 174 (1981). In Chinese.

    Google Scholar 

  132. Z. L. Li and X. L. Sun, “An experimental investigation of collector performance comparison between once-through and thermosyphon systems”, Proceedings of Symposium of the Chinese Solar Energy Society, Bejing, China (1981). In Chinese.

    Google Scholar 

  133. Y. F. Wang, Z. L. Li and X. L. Sun, “A “once-through” solar water-heating system”, Solar Energy, 29 (6), 541–547 (1982).

    Google Scholar 

  134. J. W. Baughn and K. Crowther, “An experimental study of storage elevation in a thermosyphon hot-water system”, Proceedings of the Annual Meeting of the American Section of the International Solar Energy Society, Denver, Colorado, 2, 32–35 (August 1978).

    Google Scholar 

  135. B. Norton and S. D. Probert, “Optimising the design of natural-circulation solar-energy water-heaters”, Proceedings of the Second International Conference on Passive and Low-Energy Architecture, Crete, Greece, Pergamon Press, Oxford, UK, 587–596 (June 1983).

    Google Scholar 

  136. J. P. Welford, R. B. Lehman and P. I. Cooper, “The cost factors of auxiliary electricity supply to domestic solar water heaters”, A Joint Report of CIGRE Australian Panel 41 and the CSIRO Division of Mechanical Engineering, CSIRO Technical Report No. TR 30 (1981).

    Google Scholar 

  137. P. I. Cooper and J. C. Lacey, “Evaluation of a household solar water heating system rating procedure using a reference system for performance comparison”, Solar Energy, 26, 213–222 (1981).

    Google Scholar 

  138. G. L. Morrison and C. M. Sapsford, “Performance of domestic solar water heaters”, Proceedings of the Conference of the Australian — New Zealand Section of the International Solar Energy Society, Sydney, Australia (November 1981).

    Google Scholar 

  139. G. L. Morrison and C. M. Sapsford, “Long-term performance of thermosyphon solar water-heaters”, Solar Energy, 30 (4), 341–350 (1983).

    Google Scholar 

  140. M. F. Young and J. B. Bergquam, “The performance of a thermosyphon solar domestic hot water system with hot-water withdrawal”, Solar Energy, 3, 655–658 (1984).

    Google Scholar 

  141. S. Pallis, “The solar bath-tap”, Solar Energy, 25, 531–536 (1980).

    Google Scholar 

  142. L. Makkar and M. Ince, “Solar taps and solar monitoring”, Architects Journal, 170, 1103–1105 (1979).

    Google Scholar 

  143. L. Makker, “Solar assisted domestic hot water: The three tap system”, Solar World Forum, Brighton, England, Paper I/AI/10 (August 1981).

    Google Scholar 

  144. Y. Zvirin, A. Shitzer and A. Bartal-Borenstein, “On the stability of the natural- circulation solar heater”, Proceedings of the Sixth International Heat Transfer Conference, Toronto, Canada (1978).

    Google Scholar 

  145. A. Merton, R. Greif and Y. Zvirin, “The transient, steady-state and stability behaviour of a thermosyphon with throughflow”, International Journal of Heat and Mass Transfer, 24, 621–633 (1981).

    Google Scholar 

  146. W. B. Veltkamp, “Optimisation of the mass flow in the heat distribution circuit of a solar heating system with a stratified storage”, Solar World Forum, Brighton, England, Paper I/A2/S3 (August 1981).

    Google Scholar 

  147. B. Norton and S. D. Probert, “Thermosyphonic water-heaters stimulated by renewable energy sources”, Applied Energy, 12, 237–242 (1982).

    Google Scholar 

  148. B. Norton and S. D. Probert, “Achieving thermal rectification in natural circulation solar-energy water-heaters”, Applied Energy, 14, 211–225 (1983).

    Google Scholar 

  149. H. Bird, “Compact-200 solar water heater”, Sunworld, 2, 81–82 (1978).

    Google Scholar 

  150. ANON, Sales Literature for Beasley Low Profile System, Beasley Pty Co., Adelaide, Australia (1984).

    Google Scholar 

  151. H. Iwata, A. Morie and T. Masuda, “Development of a thermosyphon solar water heater”, Technical Journal of the Matsushita Electric Works Ltd., 20, 43–49 (1980). In Japanese.

    Google Scholar 

  152. F. Moore and P. Hemker, “A passive solar thermo-syphoning field-fabricated, water storage wall system”, Proceedings of the Fifth National Passive Solar Conference, Amherst, Massachusetts, USA, 1119–1122 (October 1980).

    Google Scholar 

  153. S. A. Stewart, “Solar heating for married quarters”, Royal Engineers Journal, TO, 68–83 (1954).

    Google Scholar 

  154. J. Geoffroy, “Use of solar energy for water-heating”, Proceedings of the United Nations Conference on New Sources of Energy, Rome, Italy, 5 (2), 45–52 (August 1961).

    Google Scholar 

  155. S. Buckley, “Storage aspects of thermic-diode solar panels”, Proceedings of the Workshops on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlottesville, Virginia, USA, 141–145 (April 1973).

    Google Scholar 

  156. S. Buckley, “Thermic diode solar panels: Passive and modular”, Proceedings of the Passive Solar Heating and Cooling Conference, Alberquerque, New Mexico, USA, 293–299 (May 1976).

    Google Scholar 

  157. S. Buckley, “Thermic diode solar panels for space heating”, Solar Energy, 20, 495–503 (1978).

    Google Scholar 

  158. J. Manzano, H. Khandani and S. Buckley, “Other aspects of thermic diode solar panels: Cooling and temperature control”, Proceedings of the Second National Passive Solar Conference, University of Pennsylvania, 2, 271–276 (March 1978).

    Google Scholar 

  159. D. E. Bernard and S. Buckley, “Thermic-diode performance characteristics and design manual”, Proceedings of the International Solar Energy Society Silver Jubilee Congress, Atlanta, Georgia, USA, 2, 1218–1222 (May 1979).

    Google Scholar 

  160. W. Mingenbach, “Strategies and consequences of reverse juice in passive system design concepts”, Passive Solar Heating and Cooling Conference and Workshop Proceedings, Albuquerque, New Mexico, USA, 46–53 (May 1976).

    Google Scholar 

  161. ANON, Sales Literature for “Solar Economy” Thermosyphon Unit, Fieldway Limited, Hampshire, England (1982).

    Google Scholar 

  162. ANON, Sales Literature for “KST 125” Kit-Form Solar Water Heater, SA Giordano, Vallauris, France (1982).

    Google Scholar 

  163. ANON, “Sales Literature for “Sola Hart” water heater”, SolaHart Pty, Perth, Australia (1982).

    Google Scholar 

  164. ANON, Sales Literature for “Calpak” Solar Water-Heater, Calpak B. P. Co., Kyra Vrisi, Corinth, Greece (1981).

    Google Scholar 

  165. M. Sokolov and M. Vaxman, “Analysis of an integral compact solar water-heater”, Solar Energy, 30, 237–246 (1983).

    Google Scholar 

  166. H. Andoh, “Natural-circulation solar water heater”, National Technical Report, 27 (3), 36–41 (1981).

    Google Scholar 

  167. J. M. Bradley, “The Development of a Freeze-Tolerant Solar Water Heater Using Cross-Linked Polyethylene as a Material of Construction”, Report COO/2959/8, Division of Solar Energy, Energy Research and Development Administration, Washington, D.C., USA (1977).

    Google Scholar 

  168. A. H. Fanney and S. T. Liu, “Experimental system performance and comparison with computer predictions for six solar domestic hot-water systems”, Proceedings of the International Solar Energy Society Silver Jubilee Congress, Atlanta, Georgia, USA, 2, 972–976 (May 1979).

    Google Scholar 

  169. F. DeWinter, “Heat-exchanger penalties in double-loop solar water heating systems”, Solar Energy, 17, 335–337 (1975).

    Google Scholar 

  170. J. Bogart, “An experimental evaluation of thermosyphon solar water-heaters with closed loop freeze protection”, Proceedings of the American Institute of Aeronautics and Astronautics International Meeting, “Global Technology 2000”, Baltimore, Maryland. USA, 1–10 (May 1980).

    Google Scholar 

  171. A. Mertol, W. Place, T. Webster and R. Greif, “Thermosyphon water heaters with heat exchangers”, Proceedings of the Annual Meeting of the American Section of the International Solar Energy Society, Phoenix, Arizona, USA, 309–313 (June 1980).

    Google Scholar 

  172. ANON, Data Sheets for “Syltherm-444”, Dow-Corning Corporation, Midland, Michigan, USA, (1978).

    Google Scholar 

  173. ANON, Data Sheets for “ Therminol-44 ” Monsanto Industrial Chemicals Limited, St. Louis, Missouri, USA (1978).

    Google Scholar 

  174. J. Q. Searcy, “Hazardous Properties and Environmental Effects of Materials Used in Solar Heating and Cooling (SHAC) Technologies:” Interim Handbook, Report DOE/EV-0028, Department of Energy, Washington, D.C., USA (1978).

    Google Scholar 

  175. ANON, “Solar Heat Transport Fluids for Solar-Energy Collection Systems”, Report DOE/NASA/CR/150560, Department of Energy, Washington, D.C., USA (1978).

    Google Scholar 

  176. A. F. Orlando, D. Magnoli and L. Goldstein, “Thermosyphon solar water- heating system under Brasilian conditions”, Proceedings of the Thirteenth Intersociety Energy Conversion Engineering Conference, San Diego, California, USA, 2, 1628–1633 (August 1978).

    Google Scholar 

  177. A. F. Orlando, L. Goldstein and D. Magnoli, “Influence of heat exchanger effectiveness on the performance of thermosyphon double-loop water-heating system”, Proceedings of the International Symposium—Workshop on Solar Energy, Cairo, Egypt, 2, Pergamon Press, Oxford, UK, 731–744 (June 1978).

    Google Scholar 

  178. ANON, Sales Literature for Sola Hart Model BOOL, SolaHart Pty. Co., Perth, Western Australia (1983).

    Google Scholar 

  179. B. Mena, D. Binding and A. Garcia-Rejon, The Use of Visco-Elastic Fluids in Solar-Energy Collectors, Cuidad Universitaria, Mexico City, Private Communication (1982).

    Google Scholar 

  180. D. Conn and S. D. Probert, “A low capital and running cost dwelling built by unskilled labour”, Applied Energy, 4, 143–149 (1980).

    Google Scholar 

  181. D. Oppenheim, Small Solar Buildings in Cool Northern Climates, Architectural Press, London, England (1981).

    Google Scholar 

  182. V. Richardson, “A truly cost-effective passive water-heater”, Proceedings of the Fifth National Passive Solar Conference, Amherst, Massachusetts, USA (October 1980).

    Google Scholar 

  183. J. F. Hogan, “Solar domestic hot-water in Seattle: The relative effects of collector tilt and orientation on annual performance”, Proceedings of the Sixth National Passive Solar Conference. Portland. Oregon, USA, 121–128 (September 1981).

    Google Scholar 

  184. D. Michaelis, “Passive and low energy design”, Proceedings of the Second International Conference on Passive and Low Energy Architecture, Crete, Greece, Pergamon Press, Oxford, UK, 9–13 (June 1983).

    Google Scholar 

  185. D. Randle, K. Hobbs, J. Vickery, E. Doud, K. Noble and M. Ouellette, “Projects in Telluride”, Solar Architecture, Proceedings of the Energy Forum, Aspen, Colorado, Ann Arbor Science Publishers, Ann Arbor, Michigan, USA, 198–199 (May 1979).

    Google Scholar 

  186. R. G. Flower, “An experimental study of six passive and three active solar water heaters installed in residences”, Proceedings of the Fifth National Passive Solar Conference, Amherst, Massachusetts, USA, 1076–1077 (October 1980).

    Google Scholar 

  187. D. Kelbaugh, “Heating water and other recent experiences in our greenhouse”, Proceedings of the Fifth National Passive Solar Conference, Amherst, Massachusetts, USA, 1082–1086 (October 1980).

    Google Scholar 

  188. J. T. Czarnecki and W. R. W. Read, “Advances in solar water heating for domestic use in Australia”, Solar Energy, 20, 75–80 (1978).

    Google Scholar 

  189. J. B. Bergquam and J. W. Baughn, “A comparative study of solar hot water systems”, Proceedings of the Annual Meeting of the American Section of the International Solar Energy Society, Denver, Colorado, USA, 2 (1), 575–577 (1978).

    Google Scholar 

  190. J. B. Bergquam, M. F. Young and J. F. Baughn, “Comparative performance of passive and active solar domestic hot water systems”, Proceedings of the Fourth National Passive Solar Conference, Kansas City, Missouri, USA, 610–614 (October 1979).

    Google Scholar 

  191. G. N. Tiwari, V. S. V. Bapeshwana Rao and V. Ranjan, “Long term performance of large scale solar water heating systems: Forced circulation mode”, Energy Conservation and Management, 24, 33–42 (1984).

    Google Scholar 

  192. M. Golubov and J. Leffier, “THE THING — A direct gain solar hot water heater for New York City”, Proceedings of the Second National Passive Solar Conference, Philadelphia, Pennsylvania, USA, 642–646 (March 1978).

    Google Scholar 

  193. R. Farrington, L. M. Murphy and D. Noreen, “An analysis of solar domestic hot water systems from a system perspective”, Proceedings of the Annual Meeting of the American Section of the International Solar Energy Society, Phoenix, Arizona, USA, 3 (1), 162–166 (June 1980).

    Google Scholar 

  194. A. H. Fanney and S. T. Liu, “Test results on hot water systems show effects of system design”, Solar Engineering, 25–29 (May 1980).

    Google Scholar 

  195. Anon, Press Release, Solar Energy Research Institute, Golden, Colorado (1980).

    Google Scholar 

  196. R. Farrington, D. Noreen and L. M. Murphy, “A comparative analysis of six generic solar domestic hot water systems”, Proceedings of the Systems Simulation and Economic Analysis Conference, San Diego, California, USA, 131–136 (January 1980).

    Google Scholar 

  197. A. H. Fanney and S. A. Klein, “Performance of solar domestic hot water systems at the National Bureau of Standards — measurements and predictions”, ASME Journal of Solar Energy Engineering, 105, 311–321 (1983).

    Google Scholar 

  198. M. F. Young and J. W. Baughn, “Economics of solar domestic hot-water heaters in California”, Proceedings of the Systems Simulation and Economic Analysis Conference, San Diego, California, USA, 610–614 (October 1979).

    Google Scholar 

  199. B. E. Western, R. F. Benseman and W. H. Robinson, “The saving from domestic solar water heaters”, New Zealand Energy Journal, 53 (7), 90–93 (1980).

    Google Scholar 

  200. J. Athoe, C. Beach and S. Gleman, “Cost effectiveness of solar dhw systems: Results of side-by-side tests of active and passive systems”, Proceedings of the Annual Meeting of the American Section of the International Solar Energy Society, Philadelphia, Pennsylvania, USA, 4 (1), 696–700 (May 1981).

    Google Scholar 

  201. M. Udagawa and S. Tanaka, “Prediction of town-house performance with hot water supply and heating by solar energy”, Proceedings of the Fifth Research Presentation Meeting of the Japanese Solar Energy Society, 5, 57–60 (1979). In Japanese.

    Google Scholar 

  202. M. Udagawa, S. Tanaka and K. Ishida, “Operational experience of town houses with heating and hot water supply by solar energy”, Proceedings of the Sixth Research Presentation Meeting of the Japanese Solar Energy Society, 6, 121–124 (1980). In Japanese.

    Google Scholar 

  203. P. Sansome and B. Riley, “Passive solar dhw performance with lower costs in freezing climates”, Proceedings of the Sixth National Passive Solar Conference, Portland, Oregon, USA, 6, 116–120 (September 1981).

    Google Scholar 

  204. F. Auer, “Performance of a solar water heater with thermosyphon circulation under central European climatic conditions”, Solar World Forum, Brighton, England, Paper 1/A1/7 (August 1981).

    Google Scholar 

  205. R. Uhlemann, “Solare Warmwassersysteme mit thermosiphonischem Fluss”, Wärmetechnik, 7, 298–306 (1984). In German.

    Google Scholar 

  206. S. R. James and D. Proctor, “Evolution of a standard for evaluating the thermal performance of a domestic solar hot water system”, Proceedings of the International Solar Energy Society, Solar World Congress, Perth, Australia (August 1983).

    Google Scholar 

  207. A. H. Fanney, “An experimental technique for testing thermosyphon solar hot water systems”, ASME Journal of Solar Energy Engineering 106, 457–464 (1984).

    Google Scholar 

  208. ANON, “Method of testing to determine the thermal performance of solar domestic water heating systems”, ANSI/ASHRAE Standard 95-1981, ASHRAE, 1791 Tullie Circle N. E., Atlanta, Georgia, USA (December 1981).

    Google Scholar 

  209. K. Crowther and B. Melzer, “The thermosyphoning cool pool: A natural cooling system”, Proceedings of the Third National Passive Solar Conference, San Jose, California, USA, 3, 448–451 (January 1979).

    Google Scholar 

  210. K. Crowther, “Cooling from an evaporating, thermosyphoning roof pond”, Proceedings of the Fourth National Passive Solar Conference, Kansas City, Missouri, USA, 409–503 (October 1979).

    Google Scholar 

  211. J. Hammond, “Cool Pool Development”, Quarterly Technical Report No. 3, U. S. Department of Energy, Washington, D. C., USA (September 1980).

    Google Scholar 

  212. F. Schmalzl, Standard long-range operating stations in shelters with integrated thermal-syphon system, Proceedings of Intelec ′79, International Telecommunications Energy Conference, Washington, D.C., USA (November 1979).

    Google Scholar 

  213. A. Ghiraldi, Private Communication, Divisione Sistemi Difesaf e Progettazioni, Milan, Italy (1984).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Norton, B., Probert, S.D. (1986). Thermosyphon Solar Energy Water Heaters. In: Böer, K.W. (eds) Advances in Solar Energy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2227-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2227-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9306-4

  • Online ISBN: 978-1-4613-2227-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics