Advertisement

A 6.4 Tesla Dipole Magnet For the SSC

  • C. E. Taylor
  • S. Caspi
  • W. Gilbert
  • W. Hassenzahl
  • R. Meuser
  • K. Mirk
  • C. Peters
  • R. Scanlan
  • P. Dahl
  • J. Cottingham
  • R. Fernow
  • M. Garber
  • A. Ghosh
  • C. Goodzeit
  • A. Greene
  • J. Herrera
  • S. Kahn
  • E. Kelly
  • G. Morgan
  • A. Prodell
  • W. Sampson
  • W. Schneider
  • R. Shutt
  • P. Thompson
  • P. Wanderer
  • E. Willen
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 31)

Abstract

A design is presented for a dipole magnet suitable for the proposed SSC facility. Test results are given for model magnets of this design 1 m long and 4.5 m long. Flattened wedge-shaped cables (“keystoned”) are used in a graded, two-layer “cos θ” configuration with three wedges to provide sufficient field uniformity and mechanical rigidity. Stainless steel collars 15 mm in radial depth, fastened with rectangular keys, provide structural support, and there is a “cold” iron flux return. The outer-layer cable has 30 strands of 0.648 mm diameter NbTi multifilamentary wire with Cu/S.C. = 1.8, and the inner has 23 strands of 0.808 mm diameter wire with Cu/S.C. = 1.3. Performance data is given including training behavior, winding stresses, collar deformation, and field uniformity.

Keywords

Field Uniformity Model Magnet Correction Coil Cryogenic Engineer Iron Yoke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Niemann, et al., The cryostat for the SSC 6T magnet option, in: “Advances in Cryogenic Engineering,” Vol. 31, Plenum, New York (1986).Google Scholar
  2. 2.
    R. Scanlan, J. Royet, and C. E. Taylor, Superconducting Materials for the SSC, in: “Advances in Cryogenic Engineering,” Vol. 31, Plenum, New York (1986).Google Scholar
  3. 3.
    C. Peters, et al., “Design and performance of 40 mm, 6.5 T, collared, cold-iron model magnets,” in: IEEE Trans. Nucl. Science, Vol. NS-32, No. 5, pp. 3728–3730 (October, 1985 ).CrossRefGoogle Scholar
  4. 4.
    S. Caspi, “The use of POISSON to calculate the effects of magnetization in superconducting magnets,” (LBL-19910), SSC-MAG-47, July 17, 1985.CrossRefGoogle Scholar
  5. 5.
    J. B. Rechen, W. S. Gilbert, and W. V. Hassenzahl, “Sextupole correction coils for SSC model dipoles,” in: IEEE Trans. Nucl. Science, Vol. NS-32, No. 5, pp. 3731–3733 (October, 1985 ).CrossRefGoogle Scholar
  6. 6.
    B. C. Brown and H. E. Fisk, A technique to minimize persistent current multipoles in superconducting accelerator magnets, in: “Proc. of the 1984 Summer Study on the Design and Utilization of the Superconducting Super Collider,”Snowmass, Co., June 23-July 13, 1984, p. 336.Google Scholar
  7. 7.
    A. K. Ghosh and W. B. Sampson, Magnetization and critical currents of NbTi wires with fine filaments, in: “Advances in Cryogenic Engineering,” Vol. 31, Plenum, New York (1986).Google Scholar
  8. 8.
    K. Hemachalam, C. G. King, B. A. Zeitlin, and R. M. Scanlan, Fabrication and characterization of fine filaments of NbTi in a copper matrix, in: “Advances in Cryogenic Engineering,” Vol. 31, Plenum, New York (1986).Google Scholar
  9. 9.
    T. S. Krellick, E. Gregory, and J. Wong, Fine filamentary NbTi superconducting wires, in: “Advances in Cryogenic Engineering,” Vol. 31, Plenum, New York (1986).Google Scholar
  10. 10.
    J. Peterson, “SSC magnet errors — a short summary,” SSC-N-18, July 30, 1985. (SSC /Central Design Group-LBL, unpublished)Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • C. E. Taylor
    • 1
  • S. Caspi
    • 1
  • W. Gilbert
    • 1
  • W. Hassenzahl
    • 1
  • R. Meuser
    • 1
  • K. Mirk
    • 1
  • C. Peters
    • 1
  • R. Scanlan
    • 1
  • P. Dahl
    • 2
  • J. Cottingham
    • 2
  • R. Fernow
    • 2
  • M. Garber
    • 2
  • A. Ghosh
    • 2
  • C. Goodzeit
    • 2
  • A. Greene
    • 2
  • J. Herrera
    • 2
  • S. Kahn
    • 2
  • E. Kelly
    • 2
  • G. Morgan
    • 2
  • A. Prodell
    • 2
  • W. Sampson
    • 2
  • W. Schneider
    • 2
  • R. Shutt
    • 2
  • P. Thompson
    • 2
  • P. Wanderer
    • 2
  • E. Willen
    • 2
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Brookhaven National LaboratoryUpton, L.IUSA

Personalised recommendations