Orthobaric Liquid Densities and Dielectric Constants of Carbon Dioxide

  • W. M. Haynes
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 31)


Measurements of the orthobaric liquid densities and dielectric constants of carbon dioxide have been obtained at temperatures between 220 and 300 K. Densities were determined with a magnetic suspension densimeter, while a concentric cylinder capacitor was used for. measurements of dielectric constant. The experimental densities and dielectric constants have been used to compute values for the Clausius-Mossotti function. Comparisons with the experimental results of other investigators are presented.


Dielectric Constant Supercritical Fluid Extraction Experimental Density Liquid Carbon Dioxide Phillips Petroleum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. M. Haynes, J. F. Ely, and B. C. Bain, Isochoric (p, V, T) measurements on CO2 and (0.018 N2 + 0.982 C02) from 250 to 330 K at pressures to 35 MPa, to be submitted to J. Chem. Thermodynamics.Google Scholar
  2. 2.
    D. E. Diller and M. J. Ball, Measurements of the shear viscosity coefficients of compressed gaseous and liquid carbon dioxide, Int. J. Thermophysics (to be published).Google Scholar
  3. 3.
    J. W. Magee and J. F. Ely, Specific heats (Cy) of saturated and compressed liquid and vapor carbon dioxide, Int. J. Thermophysics (to be published).Google Scholar
  4. 4.
    W. M. Haynes and N. V. Frederick, Apparatus for density and dielectric constant measurements to 35 MPa on fluids of cryogenic interest, J. Res. Nat. Bur. Stand. (U.S.) 88: 241 (1983).CrossRefGoogle Scholar
  5. 5.
    M. R. Moldover, Visual observation of the critical temperature and density: CO2 and C2H4, J. Chem. Phys. 61: 1766 (1974).CrossRefGoogle Scholar
  6. 6.
    A. Michels, B. Blaisse and C. Michels, The isotherms of C02 in the neighborhood of the critical point and round the co-existence line, Proc. Roy. Soc. A160: 358 (1937).CrossRefGoogle Scholar
  7. 7.
    M. P. Vukalovich, N. I. Timoshenko and V. P. Kobelev, Experimental investigation of C02 density at temperatures below 0°C, Thermal Engineering 17: 82 (1970).Google Scholar
  8. 8.
    J. C. Holste et al, Experimental PVT values for pure carbon dioxide between 220 and 448 K, J. Chem. Thermodynamics (to be published).Google Scholar
  9. 9.
    U. Behn, Über die dichte der kohlensaure im festen und flüssigen zustande, Ann. Phys. (Leipzig) 3: 733 (1900).CrossRefGoogle Scholar
  10. 10.
    D. Cook, The carbon dioxide-nitrous oxide system in the critical region, Proc. Roy. Soc. A219: 245 (1953).CrossRefGoogle Scholar
  11. 11.
    C. F. Jenkin, Dilatation and compressibility of liquid carbonic acid, Proc. Roy. Soc. A98: 170 (1920).CrossRefGoogle Scholar
  12. 12.
    H. H. Lowry and W. R. Erickson, The densities of co-existing liquid and gaseous carbon dioxide and the solubility of water in liquid carbon dioxide, J. Amer. Chem. Soc. 49: 2729 (1927).CrossRefGoogle Scholar
  13. 13.
    F. Linde, Messung der dielectricitatconstanten verflüssigter gase und die Mossotti-Clausius1sehe formel, Ann. Phys. (Leipzig) 56: 546 (1895).CrossRefGoogle Scholar
  14. 14.
    M. L. Verain, Sur la constante diélectrique de lfanhydride carbonique au voisinage du point critique, Acad. Sei., Paris. C. R. Hebd. Seances Acad. Sci. 154: 345 (1912).Google Scholar
  15. 15.
    J. F. Ely and G. C. Straty, Dielectric constants and molar polarizabilities of saturated and compressed fluid nitrogen, J. Chem. Phys. 61: 1480 (1974).CrossRefGoogle Scholar
  16. 16.
    G. C. Straty and R. D. Goodwin, Dielectric constant and polarizability of saturated and compressed fluid methane, Cryogenics 13: 712 (1973).CrossRefGoogle Scholar
  17. 17.
    W. M. Haynes and B. A. Younglove, Dielectric constants of saturated liquid propane, isobutane, and normal butane, in “Advances in Cryogenic Engineering,” Vol. 27, Plenum Press, New York (1982), p. 883.Google Scholar
  18. 18.
    Weber, Dielectric constant data and the derived Clausius-Mossotti function for compressed gaseous and liquid ethane, J. Chem. Phys. 65: 446 (1976).CrossRefGoogle Scholar
  19. 19.
    W. M. Haynes, Orthobaric liquid densities and dielectric constants of ethylene, Cryogenics 25: 68 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • W. M. Haynes
    • 1
  1. 1.Thermophysics DivisionNational Bureau of StandardsBoulderUSA

Personalised recommendations