Scattered Electrons in Biological Structure Determination

  • F. Peter Ottensmeyer
Part of the NATO ASI Series book series (volume 137)


Of the various atomic particles or quanta of electromagnetic radiation available for probing the finestructure of biological objects, electrons have a particularly favourable place. The wavelength of the particle at an energy of 100 keV is about 0.0037 nm, offering the promise of high spatial resolution. Its cross-section of interaction with matter is sufficiently small to penetrate a specimen 100 nm thick with ease, but large enough to interact at least once in that thickness. In addition it can be focused by electrostatic and magnetic fields, permitting the construction of electron microscopes.


Bright Field Dark Field Scattered Electron Scanning Transmission Electron Microscope Dark Field Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Misell, in Image Analysis, Enhancement and Interpretation, Vol. 7 of Practical Methods in Electron Microscopy. A.M. Glauert, Ed. ( North Holland, Amsterdam, 1978 ), p. 91.Google Scholar
  2. 2.
    P.N.T. Unwin and R. Henderson. J. Mol. Biol. 94: 425 (1975).CrossRefGoogle Scholar
  3. 3.
    M.K. Lamvik, D.A. Kopf and J.D. Robertson, Nature 301: 332 (1983).CrossRefGoogle Scholar
  4. 4.
    J. Lepault, J. Dubochet, I. Dietrich, E. Knapek and E. Zeitler, J. Mol. Biol. 163: 511 (1983).CrossRefGoogle Scholar
  5. 5.
    D.P. Bazett-Jones and F.P. Ottensmeyer, Science 211: 169 (1981).CrossRefGoogle Scholar
  6. 6.
    G. harauz and F. P. Ottensmeyer, Nucleosome reconstruction via phosphorus mapping. Science (in press).Google Scholar
  7. 7.
    K.M. Adamson-Sharpe and F.P. Ottensmeyer, J. Microsc. 122: 309 (1981).CrossRefGoogle Scholar
  8. 8.
    G. Dupouy, F. Perrier and P. Verdier, J. de Microscopie 5: 655 (1966).Google Scholar
  9. 9.
    A.V. Crewe, J. Wall, L.M. Welter, J. Appl. Phys. 39: 5861 (1968).CrossRefGoogle Scholar
  10. 10.
    F.P. Ottensmeyer, Annu. Rev. Biophys. Bioeng. 8: 129 (1979).CrossRefGoogle Scholar
  11. 11.
    R.C. Williams and H.W. Fischer, J. Mol. Biol. 52: 121 (1970).CrossRefGoogle Scholar
  12. 12.
    F.P. Ottensmeyer, R.F. Whiting, E.E. Schmidt, R.S. Clemens, J. Ultrastruct. Res. 52: 193 (1975).CrossRefGoogle Scholar
  13. 13.
    E. Carlemalm, Ch. Colliex and E. Kellenberger. Contrast formation in electron microscopy of biological material, in: “Advances in Electronics and Electrophysics”, P. W. Hawkes, ed., Academic Press, New York, in press.Google Scholar
  14. 14.
    R.D. Heidenreich, “Fundamentals of Transmission Electron Microscopy, Interscience Publishers, New York, (1964), p. 35.Google Scholar
  15. 15.
    A. Rose, “Vision: Human and Electronic”, Plenum Press, New York (1973), p. 14.Google Scholar
  16. 16.
    F.P. Ottensmeyer, D.P. Bazett-Jones, H.P. Rust, K. Weiss, F. Zemlin and A. Engel. Ultramicroscopy 3: 191 (1978).CrossRefGoogle Scholar
  17. 17.
    A. Rose, “Vision: Human and Electronic”, Plenum Press, New York (1973), p. 12.Google Scholar
  18. 18.
    R.F. Egerton. Phys. Stat. Sol. A37: 663 (1976).CrossRefGoogle Scholar
  19. 19.
    F.P. Ottensmeyer and M. Pear, J. Ultrastruct. Res. 51: 253 (1975).CrossRefGoogle Scholar
  20. 20.
    A.V. Crewe, J. Wall and J. Langmore. Science 168: 1338 (1970).CrossRefGoogle Scholar
  21. 21.
    R.M. Henkelman and F.P. Ottensmeyer. Proc. Natl. Acad. Sci. USA 68: 3000 (1971).CrossRefGoogle Scholar
  22. 22.
    H. Hashimoto, A. Kumao, K. Hino, H. Yatsumoto and A. Ono. Jpn. J. Appl• Phys. 10: 1115 (1971).CrossRefGoogle Scholar
  23. 23.
    D. Dorignac, M.E.C. Maclachlan and B. Jouffrey. Nature 264: 533 (1976).CrossRefGoogle Scholar
  24. 24.
    F.P. Ottensmeyer, Biophys. J. 9: 1144 (1969).CrossRefGoogle Scholar
  25. 25.
    F.P. Ottensmeyer, R.F. Whiting, E.E. Schmidt and R.S. Clements. J. Ultrastruct. Res. 52: 193 (1975).CrossRefGoogle Scholar
  26. 26.
    F.P. Ottensmeyer, D.P. Bazett-Jones, J. Hewitt, G.B. Price, Ultramicroscopy 3: 303 (1978).CrossRefGoogle Scholar
  27. 27.
    F.P. Ottensmeyer, J.W. Andrew, D.P. Bazett-Jones, A.S.K. Chan, J. Hewitt, J.Microsc.(Oxford) 109: 259 (1977).CrossRefGoogle Scholar
  28. 28.
    A.M. Fiskin, D.V. Cohn and G.S. Peterson. J. Biol. Chem. 252: 8261 (1977).Google Scholar
  29. 29.
    A.M. Fiskin, G. Peterson and F.O. Brady. Ultramicroscopy 2: 389 (1977).CrossRefGoogle Scholar
  30. 30.
    A.J. Luft and F.L. Lorscheider, Biochemistry 2: 5978 (1983).CrossRefGoogle Scholar
  31. 31.
    A.P. Korn and F.P. Ottensmeyer, J.Ultrastruct.Res. 79: 142Google Scholar
  32. 32.
    F.P. Ottensmeyer, R.F. Whiting, A.P. Korn, Proc. Natl. Sci. USA 72: 4953 (1975).CrossRefGoogle Scholar
  33. 33.
    A.P. Korn and F.P. Ottensmeyer, J. Theoret. Biol. 105: 403 (1983).CrossRefGoogle Scholar
  34. 34.
    R.M. Warrant and S. Kim. Nature 271: 130 (1978).CrossRefGoogle Scholar
  35. 35.
    A. Klug. Direct Imaging of Atoms in Crystals and Molecules. Status and Prospects for Biological Sciences. Chemica Scripta 14:291 (1978–79).Google Scholar
  36. 36.
    D.W. Andrews and F.P. Ottensmeyer, Ultramicroscopy 9: 337 (1982).CrossRefGoogle Scholar
  37. 37.
    G. Harauz, D.W. Andrews and F.P. Ottensmeyer, Ultramicroscopy 12: 59 (1983).CrossRefGoogle Scholar
  38. 38.
    R.M. Henkelman and F.P. Ottensmeyer, J. Microscopy 102: 79 (1974).CrossRefGoogle Scholar
  39. 39.
    R. Castaing and L. Henry. C. R. Acad. Sci., Paris B255: 76 (1962).Google Scholar
  40. 40.
    R.F. Egerton, J.G. Phillip, P.S. Turner and M.J. Whelan J. Phys. E 8: 1033 (1975).Google Scholar
  41. 41.
    G.H. Curtis and J. Silcox. Rev. Sci. Inst. 42: 630 (1971).CrossRefGoogle Scholar
  42. 42.
    W.H.J. Andersen and J. Kramer. Proc. Fifth Europ. Cong. Electron Microsc., Institute of Physics, London (1977) p. 146.Google Scholar
  43. 43.
    D. Krahl, K.H. Herrmann and W. Kunath. Electron optical experiments with a magnetic imaging filter, in: “Electron microscopy 1978” (Proc. 9th Intnl. Cong., J.M. Sturgess, ed., Microsc. Soc. Canada, Toronto) Vol 1, p. 42.Google Scholar
  44. 44.
    G. Zanchi, J. Sevely and B. Jouffrey. J. Microsc. Spectrosc. Electron. 2: 95 (1977).Google Scholar
  45. 45.
    A.V. Crewe, M. Isaacson and D. Johnson. Rev. Sci. Instrum 42: 411 (1971).CrossRefGoogle Scholar
  46. 46.
    R.F. Egerton. Ultramicroscopy 3: 39 (1978).CrossRefGoogle Scholar
  47. 47.
    R.D. Leapman and C.R. Swyt. A practical method for removing plural scattering from core edges in EELS. Proc. 39th Ann. Meet. Electron Microsc. Soc. America, G.W. Bailey, ed., Claitor’s, Baton Rouge (1981), p. 196.Google Scholar
  48. 48.
    A.B. Roy, Proc. 39th Ann. Meet. Electron Microsc. Soc. America, G.W. Bailey, ed., Claitor’s, Baton Rouge (1981), p. 522.Google Scholar
  49. 49.
    D.P. Bazett-Jones and F.P. Ottensmeyer. DNA organization in nucleosomes. Can. J. Biochem. 60: 364 (1982).CrossRefGoogle Scholar
  50. 50.
    A.P. Korn, P. Spitnik-Elson, D. Elson and F.P. Ottensmeyer. Specific visualization of ribosomal RNA in the intact ribosome Eur. J. Biochem. 31: 334 (1983).Google Scholar
  51. 51.
    A.L. Arsenault and F.P. Ottensmeyer. Proc. Natl. Acad. Sci. USA 80: 1322 (1983).CrossRefGoogle Scholar
  52. 52.
    A.L. Arsenault and F.P. Ottensmeyer. J. Cell Biol. 98: 911 (1984).CrossRefGoogle Scholar
  53. 53.
    H. Shuman, A.V. Somlyo and A.P. Somlyo. Electron energy-loss analysis in biology: application to muscle, and a parallel collection system. In: “Microprobe Analysis of Biological Systems”, T.E. Hutchison and A.P. Somlyo, eds., Academic Press, New York (1981), p. 273.Google Scholar
  54. 54.
    A.L. Arsenault, J.D. Castell and F.P. Ottensmeyer. Tissue and Cell 16: 93 (1984).CrossRefGoogle Scholar
  55. 55.
    F.P. Ottensmeyer. Science 215: 416 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • F. Peter Ottensmeyer
    • 1
  1. 1.The Ontario Cancer InstituteTorontoCanada

Personalised recommendations