Skip to main content

Theory of Molecular Dissociation in Shocked Nitrogen and Oxygen

  • Chapter
Shock Waves in Condensed Matter

Abstract

Recent measurements of Nellis, et. al.1,2 provide evidence for shock-induced dissociation in molecular nitrogen and oxygen. Nitrogen shows a dramatic increase in compressibility above about 30 GPa, with densities in the range expected for a monatomic fluid. This effect is much less obvious in the oxygen data, but it is reasonable to assume that dissociation occurs in that case as well. Static measurements on the solid show no evidence of a transition from a molecular to a monatomic form in nitrogen up to 52 GPa3 or in oxygen up to 13 GPa.4 Calculations by McMahan and LeSar5 predict the transition to occur at about 100 GPa in solid nitrogen. Hence, high temperatures are believed to drive shock-induced dissociation.

This work performed at Sandia National Laboratories supported by the U. S. DOE under contract DE-AC04-76DP00789.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. J. Nellis and A. C. Mitchell, Shock Compression of Liquid Argon, Nitrogen, and Oxygen to 90 GPa (900 kbar), J. Chem. Phys., 73: 6137 (1980).

    Article  Google Scholar 

  2. W. J. Nellis, N. C. Holmes, A. C. Mitchell, and M. van Thiel, Phase Transition in Fluid Nitrogen at High Densities and Temperatures, Phys. Rev. Lett., 53: 1661 (1984).

    Article  Google Scholar 

  3. S. Buchsbaum, R. L. Mills, and D. Schiferl, Phase Diagram of N2 Determined by Raman Spectroscopy from 15 to 300 K at Pressures to 52 GPa, J. Phys. Chem., 88: 2522 (1984).

    Article  Google Scholar 

  4. B. Olinger, R. L. Mills, and R. B. Roof, Jr., Structures and Transitions in Solid O2 to 13 GPa at 298 K by X-Ray Diffraction, J. Chem. Phys., 81: 5068 (1984).

    Article  Google Scholar 

  5. A. K. McMahan and R. LeSar, Pressure Dissociation of Solid Nitrogen under 1 Mbar, Phys. Rev. Lett., 54: 1929 (1985).

    Article  Google Scholar 

  6. J. H. Hildebrand and R. L. Scott, “The Solubility of Nonelectrolytes,” Dover, New York (1964).

    Google Scholar 

  7. G. I. Kerley and J. Abdallah, Jr., Theoretical Equations of State for Molecular Fluids: Nitrogen, Oxygen, and Carbon Monoxide, J. Chem. Phys., 73: 5337 (1980).

    Article  Google Scholar 

  8. G. I. Kerley, A Model for the Calculation of Thermodynamic Properties of a Fluid, in “Molecular-Based Study of Fluids,” J. M. Haile and G. A. Mansoori, eds., Am. Chem. Soc., Wash., D.C. (1983).

    Google Scholar 

  9. L. F. Mattheiss, J. H. Wood, and A. C. Switendick, A Procedure for Calculating Electronic Energy Bands Using Symmetrized Augmented Plane Waves, in “Methods in Computational Physics,” 8: 63 (1968).

    Google Scholar 

  10. D. A. Liberman, Self-Consistent Field Model for Condensed Matter, Phys. Rev. B 20: 4891 (1979).

    Article  Google Scholar 

  11. V. N. Zubarev and G. S. Telegin, The Impact Compressibility of Liquid Nitrogen and Carbon Dioxide, Sov. Phys. Dokl., 7: 34 (1962).

    Google Scholar 

  12. R. D. Dick, Shock Wave Compression of Benzene, Carbon Disulfide, Carbon Tetrachloride, and Liquid Nitrogen, J. Chem. Phys., 52: 6021 (1970).

    Article  Google Scholar 

  13. J. Wackerle, W. L. Seitz, and J. C. Jamieson, Shock-Wave Equation of State for High-Density Oxygen, in “Behavior of Dense Media Under High Dynamic Pressures,” Gordon and Breach, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kerley, G.I., Switendick, A.C. (1986). Theory of Molecular Dissociation in Shocked Nitrogen and Oxygen. In: Gupta, Y.M. (eds) Shock Waves in Condensed Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2207-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2207-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9296-8

  • Online ISBN: 978-1-4613-2207-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics