Molecular Dynamics Studies of Plastic Flow at High Strain Rates

  • Anthony J. C. Ladd


Non-equilibrium molecular dynamics techniques have been developed to investigate high strain rate plastic flow in simple two and three dimensional crystals. In these simulations the long-time, steady state, values of the stress tensor and internal energy are computed as a function of the independent variables, temperature and strain rate, which are constants of the motion. Our results show that the shear stress varies as a non-integer power of the applied strain rate. The power is approximately proportional to the temperature and reaches a value of about 0.5 just before melting.1

The molecular dynamics results can be at least semi-quantitatively reproduced by a model which involves the creation, motion and annihilation of edge dislocations. It is significant that the dislocation parameters in this model are all determined from separate calculations and represent closely the exact properties of dislocations in the material.

Our calculations are consistent with experimental data and suggest that the flow of close-packed metals is described by a single physical mechanism over a range of strain rates from 10 kHz to 1 THz.


Plastic Flow Edge Dislocation Triangular Lattice Strain Energy Release Dislocation Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Hoover, A. J. C. Ladd and B. Moran, Phys. Rev. Lett., 48, 1818 (1982). A. J. C. Ladd and W. G. Hoover, Phys. Rev.B 28, 1756 (1983).Google Scholar
  2. 2.
    See for instance recent articles by D. J. Evans and W. G. Hoover in Physics Today 37_, No. 1 (Jan. 1984) and in Nonlinear Fluid Behavior, edited by H. J. M. Hanley (Proceedings of the Conference on Nonlinear Fluid Behavior held at the University of Colorado, Boulder, 7–11 June 1982), Physica A 118 (1983).Google Scholar
  3. 3.
    D. C. Wallace, Phys. Rev. B 24, 5607 (1981).Google Scholar
  4. 4.
    L. C. Chhabildas and J. R. Asay, J. Appl. Phys. 50 2749 (1979). J. R. Asay, L. C. Chhabildas, and J. L. Wise, in Shock Waves in Condensed Matter - 1981 (Menlo Park)/Proceedings of the Conference on Shock Waves in Condensed Matter, edited by W. J. Nellis, L. Seaman, and R. A. Graham (AIP, New York, 1982), pp. 417 and 427.Google Scholar
  5. 5.
    W. G. Hoover, A. J. C. Ladd, and N. E. Hoover, in Interatomic Potentials and Crystalline Defects, edited by J. K. Lee ( Metallurgical Society, Warrendale, Pennsylvania, 1981 ).Google Scholar
  6. 6.
    A. J. Chorin, J. Fluid. Mech., 57, 785 (1973). A. F. Ghoniem, A. J. Chorin and A. K. Oppenheim, Phys. Trans. R. Soc. Lond., A304, 303 (1982).Google Scholar
  7. 7.
    D. S. Fisher, B. I. Halperin, and R. Morf, Phys. Rev. B 20, A. J. C. Ladd and W. G. Hoover, Phys. Rev. B _26, 5469 (1982).Google Scholar
  8. 8.
    W. G. Hoover, N. E. Hoover, and W. C. Moss, J. Appl. Phys. 50., 829 (1979).CrossRefGoogle Scholar
  9. 9.
    W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst, and B. Moran, Phys. Rev. A 22, 1690 (1980). A. J. C. Ladd, Molec. Phys., 53, 549 (1984).Google Scholar
  10. 10.
    A. J. C. Ladd and W. G. Hoover, J. Statist. Phys., 38., 973 (1985).D. J. Evans and G. P. Morriss, Phys. Rev., A 30, 1528 (1984).Google Scholar
  11. 11.
    D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran and A. J. C. Ladd Phys. Rev. A 28, 1016 (1983).Google Scholar
  12. 12.
    L. D. Sokolov, Dokl. Akad. Nauk SSSR 67, 459 (1949) [Soviet Phys—Dokl.67, 459 (1949)]; S. K. S. manta, Int. J. Mech. Sci. 11, 433 (1969).Google Scholar
  13. 13.
    J. J. Gilman, Micromechanics of Flow in Solids (McGraw-Hill, New York,(1969).Google Scholar
  14. 14.
    Y. Saito, Phys. Rev. Lett., 48, 1114 (1982).CrossRefGoogle Scholar
  15. 15.
    D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).CrossRefGoogle Scholar
  16. 16.
    D. C. Wallace, Phys. Rev. B 22, 1477 (1980); 22 1487 (1980).CrossRefGoogle Scholar
  17. 17.
    D. E. Grady, Appl. Phys. Lett. 38, 825 (1981).CrossRefGoogle Scholar
  18. 18.
    J. C. Campbell, Mater. Sci. Eng. 12, 3 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Anthony J. C. Ladd
    • 1
  1. 1.Physics DepartmentLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations