Coherent Anti-Stokes Raman Scattering in Benzene and Nitromethane Shock-Compressed to 11 GPA

  • D. S. Moore
  • S. C. Schmidt
  • J. W. Shaner
  • D. L. Shampine
  • W. T. Holt

Abstract

The shock-compression induced frequency shifts of the ring-stretching mode of liquid benzene and the CN-stretching mode of liquid nitromethane have been measured using coherent anti-Stokes Raman scattering (CARS). Shock pressures up to 11 GPa were achieved using a two-stage light gas gun. The frequency shifted CARS signals were generated using single-pulse Nd:YAG and broadband dye lasers. Where possible, the results of the dynamic experiments were compared to other dynamic high pressure experiments.

Keywords

Quartz Magnesium Benzene Polycarbonate HeNe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. C. Schmidt, D. S. Moore, D. Schiferl, and J. W. Shaner, Phys. Rev. Lett. 50, 661 (1983).CrossRefGoogle Scholar
  2. 2.
    D. S. Moore, S. C. Schmidt, and J. W. Shaner, Phys. Rev. Lett. 50, 1819, (1983).CrossRefGoogle Scholar
  3. 3.
    S. C. Schmidt, D. S. Moore, and J. W. Shaner, in Shock Waves in Condensed Matter1983. J. R. Asay, R. A. Graham, and G. K. Straub, eds. ( Elsevier Science Publishers B. V., 1984 ), p. 293.Google Scholar
  4. 4.
    D. S. Moore, S. C. Schmidt, D. Schiferl, and J. W. Shaner, in High Pressure in Science and Technology. Part II, C. Homan, R. K. MacCrone and E. Whalley, eds. ( North Holland, New York, 1984 ), p. 87.Google Scholar
  5. 5.
    D. S. Moore, S. C. Schmidt, D. Schiferl, and J. W. Shaner, in Los Alamos Conference on Optics 83, R. S. McDowell and S. C. Stotlar, eds. (Proceedings SPIE Volume 380, 1983 ), p. 208.Google Scholar
  6. 6.
    M. H. Rice, R. G. McQueen, and J. H. Walsh, in Solid State Physics: Advances in Research and Applications. F. Sietz and D. Turnbull, eds. ( Academic Press, New York, 1958 ), Vol. 6, p. 1.Google Scholar
  7. 7.
    S. P. Marsh, “LASL Shock Hugoniot Data,” ( University of California Press, Berkeley, CA, 1980 ).Google Scholar
  8. 8.
    J. N. Fritz, in preparation for publication.Google Scholar
  9. 9.
    W. M. Tolles, J. W. Nibler, J. R. McDonald, and A. B. Harvey, Appl. Spectrosc. 31, 253 (1977).CrossRefGoogle Scholar
  10. 10.
    W. B. Roh, P. W. Schreiber, and J.-P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).CrossRefGoogle Scholar
  11. 11.
    J. E. Griffiths, M. Clerc and P. M. Rentzepis, J. Chem. Phys. 60, 3824 (1974).CrossRefGoogle Scholar
  12. 12.
    O. B. Yakusheva, V. V. Yakushev and A. N. Dremin, High Temp.-High Pres. 3, 261 (1971).Google Scholar
  13. 13.
    J. W. Braach, J. Phys. Chem. 84, 2085 (1980).CrossRefGoogle Scholar
  14. 14.
    A. Delpuech and A. Menil, in Shock Waves in Condensed Matter1983, J. R. Asay, R. A. Graham, and G. K. Straub, eds. ( Elsevier Science Publishers B. V., 1984 )Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. S. Moore
    • 1
  • S. C. Schmidt
    • 1
  • J. W. Shaner
    • 1
  • D. L. Shampine
    • 1
  • W. T. Holt
    • 1
  1. 1.Los Alamos National LaboratoryThe University of CaliforniaLos AlamosUSA

Personalised recommendations